
Lecture 9

Linear-Quadratic Control

In this lecture we derive an optimal state-feedback controller known as the linear-quadratic
regulator.

9.1 An optimization framework

In the remainder of the course we will view the controller design problem as an optimization
problem. A general controller optimization framework is illustrated in Figure 9.1 (see also
Figure 1.5 in Lecture 1). The “Plant” block is a generalized process description that includes
all dynamics and input–output relations that are relevant for the design problem at hand.
The vector w contains all exogenous signals, including disturbances and reference signals.
The vector z contains all performance outputs (error signals, control signals, etc.) and should
in general be minimized. The “Controller” block takes a vector y as input that contains any
signals that the controller could use, including measurements and reference signals. Finally
the vector u contains the control signals as well as signals that should be included in the
performance vector z.
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✛ ✛

✛

✲
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controller inputs y

exogenous inputs w

Figure 9.1 A general controller optimization framework.

Assuming a linear MIMO plant, the general objective is to find a linear controller that
optimizes the closed-loop transfer matrix Gzw(s), subject to various constraints. The most
general form of the optimization problem will be studied in Lecture 13. In this and the
following two lectures we will focus on linear plants and quadratic performance criteria,
which yields so-called linear-quadratic (LQ) controllers. In the current lecture we will assume
that the full state vector x is available for feedback. In the next lecture we will design optimal
state estimators (Kalman filters), and in the following lecture we combine the optimal state
feedback and the Kalman filter into an linear-quadratic Gaussian (LQG) controller.

9.2 The linear-quadratic control problem

The linear-quadratic (LQ) optimal control problem is formulated as

minimize J =
∫∞

0




x(t)
u(t)




T 


Q1 Q12

QT
12 Q2







x(t)
u(t)


 dt, (9.1)

subject to ẋ(t) = Ax(t) + Bu(t), x(0) = x0. (9.2)
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Lecture 9. Linear-Quadratic Control

Here, the matrix Q =
(

Q1 Q12

QT
12 Q2

)

should be positive definite (“Q > 0”) and describes how states

and control signals different from zero are penalized. The process (A, B) must be stabilizable,
meaning that any unstable modes of A must be controllable. The objective is to control the
process from the initial state x0 to the origin (which is the assumed setpoint) while incurring
a minimal cost J.

We shall see that this problem formulation yields a static, linear, stabilizing control law that
is independent of the initial state. The problem has an analytic solution that can be calculated
by hand for small systems. Additional attractive properties are that the method is directly
applicable to MIMO systems and that there are guaranteed stability margins. The LQ problem
is also the foundation of more advanced, non-linear schemes such as model-predictive control
(MPC).

Dynamic programming

The LQ controller can be derived in many different ways. Here we will give a solution based
on the technique of dynamic programming. Dynamic programming (introduced by Richard
Bellman) means optimal sequential decision making, and is most easily explained using an
example.

Example 1. Determine u0 and u1 if the objective is to minimize

x2
1 + x2

2 + u2
0 + u2

1,

when

x1 = x0 + u0,

x2 = x1 + u1.

This can be viewed as a discrete-time optimal control problem in two time steps. The trick
in dynamic programming is to break the problem into smaller parts that can be solved
sequentially. In this case we can rewrite the problem as

min
u0,u1

{

x2
1 + x2

2 + u2
0 + u2

1

}

= min
u0

{

x2
1 + u2

0 +min
u1

{

x2
2 + u2

1

}

(x1)
︸ ︷︷ ︸

J1(x1)

}

Here we see that the cost in the last time step can be optimized first, using only knowledge of
x1. The minimization is performed using completion of the square as

J1(x1) = min
u1

{

(x1+u1)2 + u2
1

}

= min
u1

{

2
(

u1+ 1
2 x1

)2 + 1
2 x2

1

}

= 1
2 x2

1

where the optimum is attained for u1 = − 1
2 x1. Proceeding one step backwards, we can now

minimize the total cost using

J0(x0) = min
u0

{

(x0+u0)2 + u2
0 + J1(x0+u0)

}

= min
u0

{

5
2

(

u0+ 3
5 x0

)2 + 3
5 x2

0

}

= 3
5 x2

0

where the optimum is attained for u0 = − 3
5 x0. It is interesting to note that the optimal

decision in each step is a linear feedback from the current state. ✷

Dynamic programming uses Bellman’s principle of optimality, which states that, whatever
the initial state and initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision. Applying this to the LQ control
problem, we assume that the first decision is taken at time t in the state x(t). The resulting
state is x(t + ε) a short time interval ε later, when a new optimal decision should be taken.
See Figure 9.2.
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9.2 The linear-quadratic control problem

PSfr
t t+ ε T

Figure 9.2 The principle of optimality states that an optimal trajectory on the time interval [t, T] must be
optimal also on each of the subintervals [t, t+ ε] and [t+ ε, T].

For a linear-quadratic problem, it can be shown that the optimal cost on the time interval
[t, ∞) is quadratic in the initial state x(t):

min
u[t,∞)

∫∞

t




x(τ)
u(τ)




T

Q




x(τ)
u(τ)


 dτ = xT(t)Sx(t). (9.3)

Here, S is a symmetric, positive definitive matrix.

We now apply dynamic programming to the LQ problem starting in the state x(t). For an
infinitesimal time step of length ε, the process dynamics (9.2) can be written as

x(t+ ε) = x(t) + (Ax(t) + Bu(t))ε as ε → 0 (9.4)

where x(t) and u(t) are assumed constant over the short interval ε. Invoking the principle of
optimality, a new optimal decision should be taken at time t + ε. Combining (9.3) and (9.4)
we can write the optimal cost as

xT(t)Sx(t) = min
u[t,∞)

∫∞

t




x(τ)
u(τ)




T

Q




x(τ)
u(τ)


 dτ

= min
u[t,∞)

{


x(t)
u(t)




T

Q




x(t)
u(t)


ε +

∫∞

t+ε




x(τ)
u(τ)




T

Q




x(τ)
u(τ)


 dτ

}

= min
u(t)

{

(

xT(t)Q1 x(t) + 2xT(t)Q12u(t) + uT(t)Q2u(t)
)

ε

+
[

x(t) + (Ax(t) + Bu(t))ε
]T

S
[

x(t) + (Ax(t) + Bu(t))ε
]

}

where the last equality follows from the definition of S. Neglecting the ε2 terms gives Bellman’s

equation:

0 = min
u(t)

{(

xT(t)Q1 x(t) + 2xT(t)Q12u(t) + uT(t)Q2u(t)
)

+ 2xT(t)S
(

Ax(t) + Bu(t)
)

}

As a final step, we find the value of u(t) that minimizes the right-hand side of Bellman’s
equation by completion of squares:

0 = min
u(t)

{(

xT(t)Q1 x(t) + 2xT(t)Q12u(t) + uT(t)Q2u(t)
)

+ 2xT(t)S
(

Ax(t) + Bu(t)
)

}

= min
u(t)

{

xT(t)[Q1 + AT S + S A]x(t) + 2xT(t)[Q12 + SB]u(t) + uT(t)Q2u(t)
}

= xT(t)
(

Q1 + AT S + S A− (SB+ Q12)Q−1
2 (SB+ Q12)T

)

x(t)

The optimum is attained for

u(t) = −Q−1
2 (SB+ Q12)T x(t).

The quadratic matrix equation

0 = Q1 + AT S + S A− (SB+ Q12)Q−1
2 (SB+ Q12)T (9.5)

is called the (continuous-time) algebraic Riccati equation and can be solved by hand for simple
problems or by computer software (care in Matlab).
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Linear-quadratic optimal state feedback

Summarizing the result of the previous subsection, we find that the optimal control problem

minimize
∫∞

0

(

xT(t)Q1 x(t) + 2xT(t)Q12u(t) + uT(t)Q2u(t)
)

dt

subject to ẋ(t) = Ax(t) + Bu(t), x(0) = x0

is solved by the unique matrix S = ST > 0 that satisfies the algebraic Riccati equation

0 = Q1 + AT S + S A− (SB+ Q12)Q−1
2 (SB+ Q12)T .

The optimal control law is u = −Lx with

L = Q−1
2 (SB+ Q12)T ,

and the optimal cost is given by
J∗ = xT

0 Sx0.

Note that, just like in the example above, the optimal control law does not depend on the initial
state x0. Moreover, the feedback gain L is static because we are solving an infinite-horizon
problem. (A similar calculation as above can be performed also for finite-horizon problems
with time-varying system and cost matrices. We then obtain a Riccati differential equation
for S(t) and a time-varying optimal state feedback law, u(t) = −L(t)x(t).)

Example 2. Consider optimal control of an integrator process,

ẋ(t) = u(t), x(0) = x0.

The objective is to minimize the quadratic cost function

J =
∫∞

0

{

x(t)2 + ρu(t)2
}

dt, ρ > 0

With A = 0, B = 1, Q1 = 1, Q2 = ρ, and Q12 = 0, the algebraic Riccati equation becomes

0 = 1− S2/ρ [ S = √ρ

The optimal feedback gain is
L = S/ρ = 1/√ρ

yielding the closed-loop system
ẋ = −x/√ρ.

The corresponding optimal cost is

J∗ = xT
0 Sx0 = x2

0
√

ρ.

From the solution we see that we can tune the LQ controller by selecting the control signal
penalty ρ. A small value of ρ gives a high gain, a fast closed loop, and a large total cost. The
opposite holds for large values of ρ. ✷

Example 3. Consider control of a double integrator process,

ẋ =



0 1

0 0


 x+




0

1


 u, x(0) =




1

0




y =

 1 0


 x,
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9.3 An alternative solution

and the cost function

J =
∫∞

0

(

y2(t) + ρu2(t)
)

dt.

The relevant parameters for this LQ problem are

A =



0 1

0 0


 B =




0

1


 Q1 =




1 0

0 0


 Q2 = ρ

which enter the Riccati equation (9.5). Solving the problem using Matlab for ρ = 0.01, ρ = 0.1,
ρ = 1, ρ = 10 gives the closed loop responses shown below (state in full, control signal in
dashed):
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In this example, the closed loop poles can be calculated as s = 2−1/2ρ−1/4(−1±i), which clearly
shows the influence of the control signal penalty ρ on the speed of the closed-loop system. ✷

Stochastic interpretation of linear-quadratic control

When we derived the optimal controller above we assumed that the initial state is x0 and that
there are no disturbances. The same solution is valid when the process is disturbed by white
noise (essentially setting a new initial state at each time instant). We can hence equivalently
formulate a stochastic version of the LQ problem as

minimize J = E pz2p = E
{

xT Q1 x+ 2xT Q12u+ uT Q2u
}

subject to ẋ(t) = Ax(t) + Bu(t) + w(t)

where w is white noise with intensity R. The goal is now to minimize the stationary variance
of the performance output vector z. The same Riccati equation and associated solution (S, L)
is valid also for this case. The optimal cost is given by

J∗ = E wT Sw = tr S R.

9.3 An alternative solution

Dynamic programming provides an elegant way to derive the optimal control law among all
possible policies, including non-linear and linear ones, time-varying and constant ones, etc. If
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we restrict ourselves to seek out the best possible linear, static feedback law for an infinite
horizon LQ problem, a simpler solution is possible. Again consider the optimization problem
(9.1), (9.2). Postulating a linear, stabilizing control law,

u = −Lx,

the cost function can be written as

J =
∫∞

0
xT(t)

(

Q1 − Q12 L − LT QT
12 + LT Q2 L

)

x(t)dt.

The closed-loop system is given by
ẋ = (A− BL)x

with the solution
x(t) = e(A−BL)t x0.

Introducing S = e(A−BL)T t
(

Q1 − Q12 L − LT QT
12 + LT Q2 L

)

e(A−BL)T t, a Lyapunov equation for
the cost J = x(0)T Sx(0) is

(A− BL)T S + S(A− BL) + Q1 − Q12 L − LT QT
12 + LT Q2 L = 0.

We minimize S by completing the square,

AT S+S A+Q1+(LT Q2−SB−Q12)Q−1
2 (LT Q2−SB−Q12)T−(SB+Q12)Q−1

2 (SB+Q12)T = 0

with minimum attained for
L = Q−1

2 (BT S + QT
12)

The minimum S is then given by the algebraic Riccati equation

AT S + S A+ Q1 − (SB+ Q12)Q−1
2 (SB+ Q12)T = 0

which is the same as (9.5).

9.4 Stability and robustness of linear-quadratic control

The linear-quadratic optimal controller has remarkable robustness properties, as we will see
below. We start by showing that the closed-loop system is guaranteed to be stable.

Theorem 9.1—Stability of the closed-loop system

Assume that

Q =



Q1 Q12

QT
12 Q2


 > 0

and that there exists a solution S > 0 to the algebraic Riccati equation (9.5). Then the optimal
controller u(t) = −Lx(t) gives a stable closed-loop system ẋ(t) = (A− BL)x(t).

Proof: Taking the time derivative of xT Sx gives

d

dt
xT Sx = 2xT Sẋ = 2xT S(Ax+ Bu) = [Bellman’s equation]

= −
(

xT Q1 x+ 2xT Q12u+ uT Q2u
)

< 0 for x(t) ,= 0

Hence xT(t)Sx(t) is decreasing and tends to zero as t →∞.

The linear-quadratic controller also has remarkable robustness properties, as stated by the
following theorem:
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9.4 Stability and robustness of linear-quadratic control

Theorem 9.2—Robustness of the LQ controller

For a system with scalar control signal u and the LQ design parameters

Q1 > 0, Q12 = 0, Q2 = ρ > 0

the distance from the resulting optimal loop gain L(iω I − A)−1 B to −1 is never smaller than
1. This implies that the phase margin is at least 60○ and that the gain margin is infinite.

Proof: Using the Riccati equation

0 = Q1 + AT S + S A− LT Q2 L, L = Q−1
2 (SB+ Q12)T

it can be verified that

[

I + L(iω − A)−1 B
]∗

Q2
[

I + L(iω − A)−1 B
]

=
[ (iω − A)−1 B

I

]∗ [

Q1 Q12

Q∗

12 Q2

] [ (iω − A)−1 B

I

]

In particular, with Q1 > 0, Q12 = 0, Q2 = ρ > 0 it holds that

[

1+ L(iω − A)−1 B
]∗

ρ
[

1+ L(iω − A)−1 B
]

= BT [(iω − A)−1]∗Q1(iω − A)−1 B+ ρ ≥ ρ

Dividing by ρ gives
p1+ L(iω − A)−1 Bp2 ≥ 1

An example of the loop gain resulting from a linear-quadratic controller design is shown below:
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It is seen that the Nyquist curve always stays outside a unit circle centered at the critical
point −1.

It should be noted that the robustness result is only valid for the pure state feedback case,
i.e., when the full state vector is available for feedback.

69


