Lecture 9 - Outline

Linear-quadratic control:

0 Dynamic programming
Q The Riccati equation
9 Optimal state feedback

0 Stability and robustness

Automatic Control LTH, 2018 Lecture 9 FRTN10 Multivariable Control

Today’s problem: Optimal state feedback

4 X0
-] —
Plant
state x u
> Controller

Optimization problem:

[ [T(x®) (01 Q) (x®)
minimize J_./o |Z|2dt_/0 [u(t)J [ T Qz] [u(t)] dt

subjectto x(¢) = Ax(¢) + Bu(t), x(0) = xp
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] > 0 is a symmetric matrix (design parameter)

A general optimization setup

performance outputs z exogenous inputs w
- [————
Plant
controller inputs y controller outputs u
» Controller

General objective: find a controller that optimizes the closed-loop
system G, (s).

Lectures 9-11: Problems with analytic solutions

Lectures 12-14: Problems with numeric solutions
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Why linear-quadratic control?

©

Simple, analytic solution
@ Quadratic cost functions give linear state feedback control laws

@ Always stabilizing

(]

Works for MIMO systems

@ Guaranteed robustness (in the state feedback case)

©

Foundation for more advanced methods like model-predictive
control (MPC)
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Lecture 9 - Outline Dynamic programming: example

Linear-quadratic control: Determine ug and u; if the objective is to minimize

0 Dynamic programming x% +x§ +u(2) +u%
when
X1 = X0 + U
Xy = X1+ Up

Hint: Go backwards in time.
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Dynamic programming: example Quadratic optimal cost

Break the problem into smaller parts that can be solved

sequentially:
It can be shown that the optimal cost on a time interval [¢, o) is
;nin {x% + x5+ uf + u%} = min{x% + ud + min {x% + u%} (xl)} quadratic:
0,U1 uop uy
Ji(x1) < (x(1) T x(7)
1(X1 . T, T
min (0] dr =x"(t)Sx(t), S=8 >0
) ult, oo)[ [u(‘r)] [u(T)] ) )
Ji(x1) = min {(x1+u1)2 + u%} = min {2(u1+%x1) + %xlz}
i i when
= %xlz with minimum attained for u; = —%xl Xx(t) = Ax(t) + Bu(t)
and
Jo(x0) = min {(xo+uo)* + ug + Ji(xo+up)} = min {%(mﬁ%xo)z + %xé} 0= [ er Qle] >0
uo uo 12 2
3.2

= 35X, Wwith minimum attained for up = —%xo
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Dynamic programming, Richard E. Bellman, 1957

t t+mT
O\_/'O ©

Bellman’s principle of optimality:
An optimal trajectory on the time in-
terval [t, T] must be optimal also on
each of the subintervals [f, ¢ + €] and
[t +€ T].
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Bellman’s equation

From the previous slide:

xT (£)Sx(f) = min {(xT(t)le(t) +2xT ()0 12u(t) + ul (1)Qau(r)) €

i
u(t)

+ [x(t) + (Ax(1) + Bu(t))e]TS[x(t) +(Ax(1) + Bu(t))e”

Neglecting the €2 terms gives Bellman’s equation:
0= min {xT(t)le(t) + 267 (0Q1ou(t) + u” (1)05u(r))
u(t

+2x7 (1)S (Ax(r) + Bu(f))}
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/ Dynamic programming for linear-quadratic control

For an infinitesimal time step of length ¢,

x(t +€)=x(t) + (Ax(t) + Bu(t))e ase—>0

Invoking the principle of optimality for [¢,¢ + €] and [f + €, oo]:
[ (x)" (x(0)
xT(t)Sx(t) = uI[Itl,loE)/, [u(‘r)] (0] [u(‘r)] dr
_ o) (x0) = (x(0)", (x()
- u‘a‘?o){{u(r)] o) e [ 0] e iie) dT}
= min {(mele(r) +2x (0Q 1) + u” (1)Qau(r)) e
+ [x(t) + (Ax(t) + Bu(t))e]TS[x(t) + (Ax(t) + Bu(t))e]}
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Lecture 9 - Outline

Linear-quadratic control:

9 The Riccati equation
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Completion of squares The Riccati equation

Completion of squares in Bellman’s equation gives

Suppose Q,, > 0. Then the quadratic form 0= Hlldltn {(X,Tlet +2x] Quouy + utTQzuz) +2x] S(Ax + B”t)}

T Qux + 2T Qutt + ul Quut = min {x;'[Q1 + A"S + SALx, + 2. [Q12 + SBlus + uy Qo }

= (u+ 07" 07, ) Quu + Q7' 0T, x) + xT(Qx — Q07 QT ) =7 (01 + ATS + 54~ (5B+ 01103 (5B + 0n) )

is minimized by with minimum attained for

-1 AT
u=-0Q, 0.,x
v ur = -0 (SB+012) x,
The minimum is

(0 — 00} 0L )x The equation
0=01+A"S +SA-(SB+0Q12)0, (SB+Q12)"

is called the algebraic Riccati equation
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Jocopo Francesco Riccati, 1676-1754 Algebraic Riccati equations in Matlab

care Solve continuous-time algebraic Riccati equations.

[X,L,G] = care(A,B,Q,R,S,E) computes the unique stabilizing
solution X of the continuous-time algebraic Riccati equation
-1
A'XE + E'XA - (E'XB + S)R (B'XE +S') +Q =0 .

When omitted, R, S and E are set to the default values R=I,
S=0, and E=I. Beside the solution X, care also returns the
gain matrix
-1
G=R (B'XE +S")

and the vector L of closed-loop eigenvalues (i.e.,
EIG(A-B*G,E)).

Automatic Control LTH, 2018 Lecture 9 FRTN10 Multivariable Control Automatic Control LTH, 2018 Lecture 9 FRTN10 Multivariable Control



Lecture 9 - Outline Linear-quadratic optimal control

Control problem:
Linear-quadratic control: Minimize J = / (xT(t)le(t) + 2xT(t)Q12u(t) + uT(t)qu(t))dt
0

subjectto  x(t) = Ax(t) + Bu(t), x(0) = xg

Solution: Assume (A, B) stabilizable (i.e., any unstable modes are
controllable). Then there is a unique S = ST > 0 solving the
algebraic Riccati equation

9 Optimal state feedback

0=01+A"S+SA - (SB+012)0,' (SB+Q12)"

The optimal control law is u = —Lx with L = 0;'(SB + Q1»)".
The optimal cost is J* = x] Sxo.
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Remarks Example: Control of an integrator
For x(¢) = u(t), x(0) = xo.
Note that the optimal control law does not depend on xy. Minimize J= /00 {x(t)z + pu(t)z} dt
0
The optimal feedback gain L is static since we are solving an Riccati equation 0=1- Sz/p = S=+p
infinite-horizon problem.
Controller L=S/p=1/\p = u=-x/\p
(LQ theory can also be applied to finite-horizon problems and problems Closed loop system ¥=-x/\p = x= er—f/\/ﬁ
with time-varying system matrices. We then obtain a Riccati differential
equation for S(¢) and a time-varying state feedback, u(t) = —L(¢)x(z)) Optimal cost J' = ngxO = xg«/ﬁ

What values of p give the fastest response? Why?
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Solving the LQ problem in Matlab Example - Double integrator

lgr Linear-quadratic regulator design for state space systems 0 1 0 1 0 1
A= B = 0 = O2=p x(0)=

0 0 1 0 0 0
[K,S,E] = 1gr(SYS,Q,R,N) calculates the optimal gain matrix K
such that:

States (full) and input (dotted) for p = 0.01, p = 0.1:

* For a continuous-time state-space model SYS, the state- 4 4
feedback law u = -Kx minimizes the cost function

2 2
J = Integral {x'Qx + u'Ru + 2%x'Nu} dt O

of = o /
subject to the system dynamics dx/dt = Ax + Bu 2: 2JJ
The matrix N is set to zero when omitted. Also returned are _45 4
the solution S of the associated algebraic Riccati equation 0 5 10 0 5 10
and the closed-loop eigenvalues E = EIG(A-B*K).
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Example - Double integrator Stochastic interpretation of LQ control

. 4 Z white noise w
~——— le—————
Plant
2 2 <
\,
e b state x u
) 2 » Controller
0 5 10 % 5 10
s Minimize J=E|z]* = E{x"Q1x + 2x" Q1ou + u” Qou}
- subject to x(t) = Ax(t) + Bu(t) + w(t)
1 .
Clos??zlo?%poles: 0 " where w is white noise with intensity R. Same Riccati equation and
s=271"p (=1 x1i) » ) < solution (S, L) as in the deterministic case. The optimal cost is
-2 # T
J*=Ex" Sx = trace(SR)
R S 0 1 2 3
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Lecture 9 - Outline

Linear-quadratic control:

0 Stability and robustness
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Robustness of optimal state feedback

Nyquist Diagram

Imaginary Axis
o

The distance from the loop gain L(iwl — A)™'B to —1 is never
smaller than 1. This is always true(!) when Q; > 0, Q1> = 0 and
0> > 0 is scalar. The phase margin is at least 60° and the gain
margin is infinite!
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Stability of the closed-loop system

Assume that

@1 On
Q_[ 1T2 Q2]>O

and that there exists a solution S > 0 to the algebraic Riccati
equation. Then the optimal controller u(¢) = —Lx(t) gives an
asymptotically stable closed-loop system x(z) = (A — BL)x(¢).

Proof:
%xT(t)Sx(t) = 2x7Sx = 2xT S(Ax + Bu)
= —(xTle +2xTQou + uTqu) <O0forx(t)#0
Hence x’(r)Sx(t) is decreasing and tends to zero as t — co.
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Lecture 9 - summary

@ We specify what “optimal control” means using a quadratic
cost function.

@ Solving an algebraic Riccati equation gives the optimal state
feedback law u = —Lx:

0=01+ATS+SA-(SB+010)0;' (SB+ Q1) = S
L=05"(SB+0n)"

@ The LQ controller has remarkable robustness properties.
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