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Course Outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance
L9-L11 Controller optimization: analytic approach

@ Linear-quadratic control
@ Kalman filtering
@ LQG control

L12-L14 Controller optimization: numerical approach

L15 Course review
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Lecture 9 - Outline

Linear-quadratic control:

e Dynamic programming
a The Riccati equation
a Optimal state feedback

@ Stability and robustness
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A general optimization setup

performance outputs z exogenous inputs w
-~ J————
Plant
controller inputs y controller outputs u
> Controller

General objective: find a controller that optimizes the closed-loop
system G, ().

Lectures 9-11: Problems with analytic solutions

Lectures 12-14: Problems with numeric solutions
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Today’s problem: Optimal state feedback

z X0
- l——
Plant
state x u
> Controller

Optimization problem:

- o T
minimize J=/O |Z|2dt:/0 [zg;] [Qlle QQIZZJ [zg;] a

subject to x(t) = Ax(t) + Bu(t), x(0) = xo

0= [ QTI Qle] > 0 is a symmetric matrix (design parameter)
12 2
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Why linear-quadratic control?

(%]

Simple, analytic solution
@ Quadratic cost functions give linear state feedback control laws

(*]

Always stabilizing

(%]

Works for MIMO systems

@ Guaranteed robustness (in the state feedback case)

(%]

Foundation for more advanced methods like model-predictive
control (MPC)
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Lecture 9 - Outline

Linear-quadratic control:

0 Dynamic programming
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Dynamic programming: example

Determine ug and u; if the objective is to minimize
2 2 2 2
Xl + X2 + MO + I/tl
when

X1 = Xo +Ug

X2 X1+ U

Hint: Go backwards in time.
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Dynamic programming: example

Break the problem into smaller parts that can be solved
sequentially:

: 2 2 2 2 : 2 2 : 2 2
min {xy + x5 +uy +u =mIny X; + Uy +min x5 +u X
o, { 1 2 0 1} uo { 1 0 u { 2 1} ( 1)}

Ji(x1)
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Dynamic programming: example

Break the problem into smaller parts that can be solved
sequentially:

Uo,u|

min {x] + x5 +uj +uj} = nlll})n{xl2 +ul + n:illn {x3 +ui} (X])}

Ji(x1)

o 20y 102, 1,2
Ji(xy) = min {(i+u)” +ui} = Hbltlln{z(”ﬁle) + le}

= %xf with minimum attained for u; = —%xl

. . 2
Jo(xo) = min {(x0+uo)2 +ud + Ji(xo+uo)} = min {%(uo+%xo) + %xé}

= 2xj with minimum attained for uy = —2xo
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Quadratic optimal cost

It can be shown that the optimal cost on a time interval [z, o) is
quadratic:

) T
min / ["(T)] 0 [X(T)J dr = x"(0)Sx(t), S=5T>0

uft, o) u(T) ”(T)

when
Xx(t) = Ax(t) + Bu(t)

O On
Q_[ 1T2 Q2]>0

and

Automatic Control LTH, 2018 Lecture 9 FRTN10 Multivariable Control



Dynamic programming, Richard E. Bellman, 1957

Bellman'’s principle of optimality:
An optimal trajectory on the time in-
terval [f, T] must be optimal also on
each of the subintervals [f, t + €] and
[t+€ T].
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Dynamic programming for linear-quadratic control

For an infinitesimal time step of length ¢,

x(t +€)=x(t)+ (Ax(¢t) + Bu(t))e ase—0
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Dynamic programming for linear-quadratic control

For an infinitesimal time step of length ¢,

x(t +€)=x(t)+ (Ax(¢t) + Bu(t))e ase—0

Invoking the principle of optimality for [,7 + €] and [f + €, 0]

T O (x@) ()
0ss0=gin [~ [10) o 1) e

] (x)" (x(0) © (20", (x(®)
r?‘?o){[um] o)+ [ [ie) Q[um]"}
min | (<7 0013(0) + 24 (Q1zutt) + 7 ()Qaut0)e
[x(t) + (Ax() + Bu(t))e] [x(t) + (Ax(1) + Bu(t))e”
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Bellman’s equation

From the previous slide:

I (0)Sx(r) = min {( T(0)01x(t) + 2xT (1)Q12u(t) + u” (1)Qou(t)) €
[x(t) + (Ax(t) + Bu(t))e] S[x(t) + (Ax(t) + Bu(t))e”

Neglecting the € terms gives Bellman’s equation:
0= m(m{ T(0)01x(t) + 2x" (1) Q12u(r) + uT(t)Qzu(t))

+2x7 (1)S (Ax(z) + Bu(f))}
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Lecture 9 - Outline

Linear-quadratic control:

Q The Riccati equation
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Completion of squares

Suppose Q,, > 0. Then the quadratic form
xTQxx + 2xTquu + uTQuu
= (u+ Q' 05,0 Qulu + 05" 0%, %) + x(Qx — 00y 01

is minimized by
1T
u= _Qu qux
The minimum is

xT(Qx - quQ;l Qiu)x
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The Riccati equation

Completion of squares in Bellman’s equation gives

0 = min {(xtTlet +2xT Q oty + utTqu,) + 227 S(Ax, + Bu,)}
us

= min {x] [Q1 + A"S + SA]x, + 2x] [Q12 + SBlu; + u; Qou, }
ur
_ T T -1 T
_ (Q1 + ATS + SA—(SB + 012)0;'(SB + 012) )xt
with minimum attained for

Ur = —QEI(SB + le)sz
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The Riccati equation

Completion of squares in Bellman’s equation gives
0 = min {(xtTlet +2xT Q oty + utTqu,) + 227 S(Ax, + Bu,)}
= min {x] 101 + ATS + SAlx; + 2x] [Q12 + SBlu; + u; Qouy}
- x,T(Q1 + ATS + SA—(SB + 012)0; (SB + le)T)xt
with minimum attained for
u = -0;'(SB+ Q1) x
The equation
0=01+ATS+SA - (SB+012)0;' (SB+ Q12)"

is called the algebraic Riccati equation
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Jocopo Francesco Riccati, 1676-1754
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Algebraic Riccati equations in Matlab

care Solve continuous-time algebraic Riccati equations.

[X,L,G] = care(A,B,Q,R,S,E) computes the unique stabilizing
solution X of the continuous-time algebraic Riccati equation
-1
A'XE + E'XA - (E'XB + S)R (B'XE + S') +Q =0 .

When omitted, R, S and E are set to the default values R=I,
S=0, and E=I. Beside the solution X, care also returns the
gain matrix
-1
G=R (B'XE +S")

and the vector L of closed-loop eigenvalues (i.e.,
EIG(A-B*G,E)).
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Lecture 9 - Outline

Linear-quadratic control:

9 Optimal state feedback
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Linear-quadratic optimal control

Control problem:
Minimize  J = / B (xT(t)le(t) + 2x7(1)0 1u(t) + uT(t)qu(t))dt
0

subjectto  x(t) = Ax(¢) + Bu(z), x(0) = xo

Solution: Assume (A, B) stabilizable (i.e., any unstable modes are
controllable). Then there is a unique S = ST > 0 solving the
algebraic Riccati equation

0=01+ATS+SA - (SB+012)0;' (SB+ Q12)"
The optimal control law is u = —Lx with L = 05'(SB + Q12)".
The optimal cost is J* = x{ Sxo.
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Remarks

Note that the optimal control law does not depend on xyp.

The optimal feedback gain L is static since we are solving an
infinite-horizon problem.

(LQ theory can also be applied to finite-horizon problems and problems
with time-varying system matrices. We then obtain a Riccati differential
equation for S(¢) and a time-varying state feedback, u(t) = —L(t)x(¢))
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Example: Control of an integrator

For x(t) = u(t), x(0) = xo,

Minimize J= / {x(t)* + pu(t)*} dt

0
Riccati equation 0=1-8%*/p = S= /2
Controller L=S/p=1/\p = u=-x/+p

Closed loop system x=-x/\p = x= xpe /P

Optimal cost J* = xtSxo = x5/p

What values of p give the fastest response? Why?
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Solving the LQ problem in Matlab

lgr Linear-quadratic regulator design for state space systems

[K,S,E] = 1gr(SYS,Q,R,N) calculates the optimal gain matrix K
such that:

* For a continuous-time state-space model SYS, the state-
feedback law u = -Kx minimizes the cost function

J = Integral {x'Qx + u'Ru + 2*x'Nu} dt
subject to the system dynamics dx/dt = Ax + Bu
The matrix N is set to zero when omitted. Also returned are

the solution S of the associated algebraic Riccati equation
and the closed-loop eigenvalues E = EIG(A-B*K).

Automatic Control LTH, 2018 Lecture 9 FRTN10 Multivariable Control



Example - Double integrator

S I I P Rt

States (full) and input (dotted) for p = 0.01, p = 0.1:

4 4
I N 2
o\:\\ - of /
. .
-2f! -2/
- 5 10 % 5 10
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Example - Double integrator

4 4
2 2
O .- —======
-2 -2
o 5 10 % 5
3
2 X
1 * «
Closed loop poles: x
s =2712p714(=1 +i) o
-2
B — 0 1 2 3

Automatic Control LTH, 2018
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Stochastic interpretation of LQ control

Z white noise w
-+ D E—
Plant
state x u
> Controller
Minimize J=E|z]? =E{xTQ1x+2xTQ12u+uTQ2u}

subject to x(t) = Ax(t) + Bu(t) + w(t)

where w is white noise with intensity R. Same Riccati equation and
solution (S, L) as in the deterministic case. The optimal cost is

J* = ExT Sx = trace(SR)

Automatic Control LTH, 2018 Lecture 9 FRTN10 Multivariable Control



Lecture 9 - Outline

Linear-quadratic control:

e Stability and robustness
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Stability of the closed-loop system

Assume that

@1 On
Q_[Qsz Q2]>0

and that there exists a solution § > 0 to the algebraic Riccati
equation. Then the optimal controller u(t) = —Lx(t) gives an
asymptotically stable closed-loop system x(t) = (A — BL)x(t).

Proof:
d
EXT(I)Sx(t) =2xT8x = 2xT S(Ax + Bu)
_ T T T
= —(x O1x+2x"' Qrpu+u Qzu) <Oforx(t)#0
Hence x7(¢)Sx(t) is decreasing and tends to zero as t — co.
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Robustness of optimal state feedback

Nyquist Diagram

Imaginary Axis

-0 -9 -8 -7 -6 5 -4 -3 -2 -1 0
Real Axis

The distance from the loop gain L(iwl — A)"!B to —1 is never
smaller than 1. This is always true(!) when Q1 > 0, Q1> = 0 and
Q> > 0 is scalar. The phase margin is at least 60° and the gain
margin is infinite!
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Lecture 9 - summary

@ We specify what “optimal control” means using a quadratic
cost function.

@ Solving an algebraic Riccati equation gives the optimal state
feedback law u = —Lx:

0=01+A"S+SA-(SB+010)05'(SB+01n) = §
L=0;"(SB+ Q)"

@ The LQ controller has remarkable robustness properties.
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