Lecture 8 - Outline

0 Transfer functions for MIMO systems

Q Limitations due to RHP zeros

9 Decentralized control

0 Decoupling
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Example system: Distillation column
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Typical process control system
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Figure 13-6. Automatic control system for Perco moter fuel alkylation process.
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Example system: Distillation column

Outputs: Inputs:
y1 = top draw composition  u; = top draw flowrate
y2

side draw composition u, = side draw flowrate

u3 = bottom temperature control input

Linear first-order plus deadtime (FOPDT) model:
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Multivariable transfer functions Sensitivity functions for MIMO systems

d n
Output sensitivity function:
r e u v 4 y
C P — (I+PC)'=5s
Input sensitivity function:
; (I+cp)!

Mini-problem:
P and C are matrices and all signals are vectors - order matters!
Find the sensitivity functions above in the block diagram on
Z =PCR+PD - PC(N + Z) the previous slide.
(I + PC)Z = PCR+ PD - PCN

Z=(I+PC)'PC R+(I+PC)”"'P D -(I+PC)'PC N

N——
G.=T Gza Gzn
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Some useful identities Lecture 7 - Outline

Notice the following identities:

() [I+PC'P=P[I+CP]!
.. -1 _ -1
(i) ClU+PCT =1+ CPIC 9 Limitations due to RHP zeros

(iii) T = P[I + CP]"'C = PC[I + PC]™' = [I + PC]"'PC
(iv) S+T =1
Proof:

The first equality follows by multiplication on both sides with [I + PC]
from the left and with [ + CP] from the right.

Left: [ + PC][I + PC]"'P[I + CP] = I - [P + PCP] = [I + PC]P
Right: [ + PC|P[I + CP]"[I + CP] = [I + PC]P - I = [I + PC]P
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Hard limitations from RHP zeros

THEOREM:

Assume that the MIMO system P(s) has a transmission zero z in the
RHP.

Let S(s) = [I + P(s)C(s)]~! and let Ws(s) be a scalar, stable and
minimum phase transfer function. Then the specification

[WsSlleo = sup T (Ws(iw)S(iw)) < 1

is possible to meet only if

Ws(2)| < 1
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Example - Controller 1

The controller

s s(s+2)
Ki(s+1) 2K;(s+0.5)
TS s(s+1)

Ci(s) =

K, (S+1) _3K2(§‘+05)“

gives the diagonal loop transfer matrix

K](—S+1) 0
P(5)Ci(s) = |
0 K> (s+0.5)(=s+1)
s(s+1)(s+2)

The system is decoupled into two scalar loops, each with an
unstable zero at s = 1 that limits the bandwidth.

Closed-loop step responses from (ry, ;) to (y1, y2) for K; = K, = 1
are shown on next slide.
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2 3
s+l s+2
P(s) = 1 |
s+1 s+1
Computing the determinant
3 —-s+1

P = G T Ge D6 ) G126+

shows that the process has a RHP zero in 1, which will limit the
achievable performance.

[See lecture notes for details of the following slides]
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Step responses using Controller 1

Step Response
From: In(1) From: In(2)

To: Out(1)

Amplitude

To: Out(2)

-0.5
0 2 4 6 80 2 4 6 8
Time (seconds)

No cross-coupling, but RHP zero shows up in both y; and y,.
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Sensitivity sigma plot using Controller 1 Example - Controller 2

Singular Values
10° w

The controller

Singular values
N -1
IWg'l Ki(s+1)

ﬁﬁﬁﬁﬁﬁﬁﬁﬁ CZ(S) = _Klferl)
s

K>
K>

gives the triangular loop transfer matrix

Ki(=s+1)  K;(55+7)
1 P(s)Cy(s) = 8(3‘52) “‘*%}é;‘“)

s+1

Singular Values (abs)

Now the decoupling is only partial: Output y; is not affected by r;.
Moreover, no RHP zero limits the rate of response in y,!

10'2 I I I
1072 107 10° 10° 102
F o/
requency (rad’s) The closed-loop step responses for K; = 1, K» = 10 are shown on
Ws(s) = 101 impossible to meet due to RHP zero next slide.
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Step responses using Controller 2 Sensitivity sigma plot using Controller 2

Step Response

From: In(1) From: In(2) Singular Values
1.5 10! T T
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The RHP zero does not prevent a fast y, response to r, but at the price of Ws(s) = s+21;01’ impossible to meet due to RHP zero

a simultaneous undesired response in yj.
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Example - Controller 3 Step responses using Controller 3

Step Response

15 From: In(1) From: In(2)
The controller 1
| D3Ka(s10.5) e
+2 5
Cs(s) = K 2B Ds) T
1 s(s+1)
(0]
: . . 2 05
gives the triangular loop transfer matrix g 15
<<
K1(55+7) 0 _
s+1)(s+2 g
P(5)C5(s) = | © ﬁ ) Ko(~1+5)(s+0.5) 3
s+1 s(s+1)2(s+2) °

In this case y; is decoupled from r; and can respond arbitrarily fast

for high values of K|, at the expense of bad behavior in y,. Step 0 2 4 6 80 2 4 6 8
. Time (seconds)

responses for K; = 10, K> = 1 are shown on next slide.

The RHP zero does not prevent a fast y; response to rq but at the price of
a simultaneous undesired response in y».
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Sensitivity sigma plot using Controller 3 Example - summary

Singular Values

10° T I
Singular values
R |W§1‘

g
P To summarize, the example shows that even though a
E multivariable RHP zero always gives a performance
5 limitation, it is possible to influence where the effects should
D
& 1 show up.

10'2 I I I I

102 107 10° 10" 102 108

Frequency (rad/s)

Ws(s) = 10 impossible to meet due to RHP zero

S
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Lecture 7 - Outline Decentralized control

Background in process control:

@ A few important variables were controlled using the simple
loop paradigm: one sensor, one actuator, one controller

Q Decentralized control @ As more loops were added, interaction was handled using
feedforward, cascade and midrange control, selectors, etc.

@ Not always obvious how to associate sensors and actuators -
the pairing problem

Computer control and state-space design methods eventually led
to centralized MIMO control schemes (LQG, MPC, etc.)
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Interaction between simple loops

L—

Rosenbrock’s example

" e C > = Y1 X 5
+1)? +1)?
Process P(s) = (s ) (s )

.  —e uz 1 1
G - - )2 (s+1)2 (s+1)?

-

Very benign subsystems, no fundamental limitations.
Yi(s) = Pui(s)Ui(s) + P1aUs(s) y benign stbsy

Ya(s) = P21(s)Ui(s) + PpnUs(s),

What happens when the controllers are tuned individually (C; for
P11 and G, for Py), ignoring the cross-couplings (P13 and P»p)?
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Rosenbrock’s example with two SISO controllers Bristol’s Relative Gain Array (RGA)

o U, = (1 + %)(Rl —Yl)
o U, = —-Ky)Y, with K, =0, 0.8, and 1.6.

@ Edgar H. Bristol, "On a new measure of interaction for
multivariable process control" [/EEE TAC 11(1967) pp. 133-135]

@ A simple way of measuring interaction in MIMO systems

] @ Idea: Study how the gain between one input and one output
‘ ‘ ‘ changes when all other outputs are regulated:

open-loop gain
“closed-loop gain”

relative gain =

@ Often only the static gain P(0) is analyzed, but one could also

0 ! ‘ ! ! ! ! ! ! ! look at for instance P(iw.) and other frequencies
0 2 4 6 8 10 12 14 16 18 20

The second controller has a major impact on the first loop! Gain
reversal in u; — y; when K; = 1.6.
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Calculation of RGA Calculation of RGA

Assume the input-output relation y = Gu, where G is square and

invertible. Relative gain:

Ay = Gy -G

Open loop: Assume u; # 0 and all other inputs zero. Then
All elements of the relative gain array (matrix) can be computed in

Yk = Gyju; one go as
A =RGA(G) = G .« (G H

Closed loop: Assume y; # 0 and that all other outputs are where .x denotes element-wise (Hadamard/Schur) multiplication
regulated to zero. Solving for the corresponding inputs gives

1 Matlab: RGA = G.*inv(G).’

_ -1 — .
uj = ijyk S oy = G_lu]
jk
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Properties of RGA Interpretation of RGA

® A; = 1 means small closed-loop interaction. Suitable to pair
output k with input j.
@ RGA is dimensionless; not affected by choice of units or

i ® A;; < 0 corresponds to a sign reversal due to feedback and a
scaling.

risk of instability if output & is paired with input j — avoid!
@ RGA is normalized: Rows and columns of A sum to 1. @ 0 < A; < 1 means that the closed-loop gain is larger than the

@ Diagonal or triangular plant gives A = I. open-loop gain; the opposite is true for 4x; > 1.

Rule of thumb: Pair the outputs and inputs so that corresponding
relative gains are positive and as close to 1 as possible.
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RGA of Rosenbrock’s example Rosenbrock’s example with reverse pairing

Analysis of static gain:

1+
o5k
1 2 _1 -1 2
P(O)_ [1 1]’ P (0)_ [ 1 _1] O 1 1 1 1 Il Il Il Il Il
0 2 4 6 8 10 12 14 16 18 20
-1 2 1
A =P(0) «(PTI(0)" = [ 5 _1J
Slost
@ Negative value of 417 indicates the problematic sign reversal 0 ! w ! ! w w w w \
. . 0 2 4 6 8 10 12 14 16 18 20
found previously when y; was controlled using u;.
@ Better to use reverse pairing, i.e. let uy control y; and vice o U, = (1 + %)(Rl -9)

versa. o U, = —-KyY, with K, = 0, 0.8, and 1.6.
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RGA of non-square systems Lecture 7 - Outline

The RGA can also be computed for a general gain matrix G:
RGA(G) = G .+ (G)"

Here, 1 denotes the pseudo-inverse (Matlab: pinv)

Example: Distillation column: © Decoupling

40 18 59 0.28 —-0.61 1.33
PO) = [5.4 5.7 6.9]’ RGAPO) = 0.01 1.58 -0.59

Suggested pairing for decentralized control: y;—u3, y»—ua, u;
unused
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Decoupling Decoupling
r e W2 _e> C _u» ‘/V1 _u» P y
Many variants/names:
[ -1 | -
— @ Input/conventional/feedforward decoupling: P = PW;, W =1
@ Output/inverse/feedback decoupling: P=WoP, W, =1

Idea: Select decoupling filters Wi and W, so that the controller
sees a diagonal plant: W, and W, can be static or dynamic systems

Example: Static input decoupling: W; = P~1(0), W, =1

S *x O
* O O

*
P=W2PW1 =10
0

Then we can use a decentralized controller C with the same
diagonal structure.
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Lab 2: The quadruple tank Summary
-y -y
I I
Tank 3 Tank 4
(A1) (B1) @ All real MIMO systems are coupled
Y3 Y4 @ Multivariable RHP zeros = limitations
@ Don't forget process redesign
- T @ Decentralized control — one controller per controlled variable
4 #%D @ RGA gives insight for input-output pairing
Tank 1 Tank 2 @ Decoupling
Pump 1 (BP (A2) |y (B2) |y, @ump 2 (AP) Simpler system
Mili Juz SISO design, tuning and operation can be used
L — | —
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