
Lecture 7 – Outline

1 Bode’s Relation and Bode’s Integral

2 Limitations from RHP poles/zeros and delays: insights from loop shaping

3 Limitations from RHP poles/zeros: Hard proofs
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Limitations in control design

What we already know:

Model uncertainty, measurement noise, and control signal

limitations give upper limits on the achievable bandwidth

S+ T = 1, which implies

|S(iω)| + |T(iω)| ≥ 1
!
!|S(iω)| − |T(iω)|

!
! ≤ 1

Some modes may be impossible to control or observe due to

lack of controllability or observability
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Limitations in control design

Fundamental limitations:

Bode’s Relation: amplitude and phase are coupled

Bode’s Integral: |S(iω)| (and |T(iω)|) cannot be made small

everywhere

Limitations from non-minimum-phase elements:

unstable poles

right-half-plane (RHP) zeros

time delays
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Recall: Loop shaping

The loop transfer function L = PC should be made large at low

frequencies and small at high frequencies:
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How quickly can we make the transition from high to low gain and

still retain a good phase margin?
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Recall: Amplitude and phase are coupled

LHP (stable) pole LHP (“stable”) zero
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If G(s) is minimum phase (no RHP poles/zeros or time delays) then

arg G(iω) ≈
π

2

d log |G(iω)|

d logω
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Bode’s Relation

If G(s) is minimum phase, then

arg G(iω) =
2ω

π

∫ ∞

0

log |G(iν)| − log |G(iω)|

ν2 − ω2
dν

=
1

π

∫ ∞

0

d log |G(iν)|

d log ν
log

!
!
!

ν + ω

ν − ω

!
!
!

︸!!!!!!!︷︷!!!!!!!︸

weighting function

d log ν
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Consequence for phase margin

For minimum-phase systems, to have a phase margin between

30◦ and 60◦, the slope of the amplitude curve should be between

approx. −1.67 and −1.33 at the cross-over frequency.
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Gm = 3.17  (at 2.49 rad/s) ,  Pm = 30 deg (at 1.34 rad/s
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Bode’s Integral – stable system

For a stable system with loop gain L(s) with relative degree ≥ 2

the following conservation law for the sensitivity function

S(s) = (1 + L(s))−1 holds:

∫ ∞

0
log |S(iω)|dω = 0

(Sometimes known as the "waterbed effect")
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Example

P-control of (s2
+ s + 1)−1

10-1 100 101
10-1

100

M
a
g
n
itu

d
e
 (

a
b
s)

K=1

K=2

K=5

Sensitivity Function

Frequency  (rad/s)

Automatic Control LTH, 2018 Lecture 7 FRTN10 Multivariable Control

Bode’s Integral – general case

For a system with loop gain with relative degree ≥ 2 and unstable

poles p 1, . . . , p M , the following conservation law for the sensitivity

function holds:

∫ ∞

0
log |S(iω)|dω = π

M∑

i=1

Re(p i)

(There exists a similar condition relating T(s) and RHP zeros, see

the lecture notes.)
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G. Stein: "Conservation of dirt!"

Picture from Gunter Stein’s Bode Lecture (1985) “Respect the unstable”. Reprint

in IEEE Control Systems Magazine, Aug 2003.
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1 Bode’s Relation and Bode’s Integral

2 Limitations from RHP poles/zeros and delays: insights from loop shaping

3 Limitations from RHP poles/zeros: Hard proofs
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Non-minimum-phase systems

A transfer function G(s) can be factored as

G(s) = Gmp(s)Gnmp(s)

such that

Gmp(s) only contains minimum-phase elements

Gnmp(s) contains non-minimum-phase elements and has

unit magnitude: |Gnmp(iω)| = 1

negative phase: arg Gnmp(iω) < 0
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Non-minimum-phase elements

Pole in the right half-plane at p :

Gnmp(s) =
s + p

s − p

Zero in the right half-plane at z:

Gnmp(s) =
z − s

s + z

Time delay of length L:

Gnmp(s) = e−sL
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Insights from loop shaping

The minimum-phase part of the system can be shaped to our

liking, to achieve a suitable cross-over frequency ωc and phase

margin ϕm. However,

An RHP pole p decreases the phase by > 90◦ for ω < p . To

retain a reasonable phase margin, we must have ωc > p .

An RHP zero z decreases the phase by > 90◦ for ω > z. To

retain a reasonable phase margin, we must have ωc < z.

A time delay L decreases the phase by ωL. To retain a

reasonable phase margin, we must have ωc <
π/2
L
≈ 1.6

L
.
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Example: Rear-wheel steering bike
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Bike example

A (linearized) torque balance can be written as

J
d2θ

dt2
= mgℓθ +

mV0ℓ

b

(

V0β + a
dβ

dt

)
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Bike example, cont’d

J
d2θ

dt2
= mgℓθ +

mV0ℓ

b

(

V0β + a
dβ

dt

)

where the physical parameters have typical values as follows:

Mass: m = 70 kg

Distance rear-to-center: a = 0.3 m

Height over ground: ℓ = 1.2 m

Distance center-to-front: b = 0.7 m

Moment of inertia: J = 120 kgm2

Speed (reverse sign if rear-wheel steering): V0 = 5 ms−1

Acceleration of gravity: g = 9.81 ms−2

The transfer function from β to θ is

P(s) =
mV0ℓ

b

as + V0

Js2 − mgℓ
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Bike example, cont’d

The system has an unstable pole at

p =

√

mgℓ

J
≈ 2.5

The closed-loop system must be at least as fast as this. Moreover,

the transfer function has a zero at

z = −
V0

a
≈ −

V0

0.3

For the back-wheel steered bike we have the same pole but

different sign of V0 and the zero will thus be in the RHP!

An unstable pole-zero cancellation occurs for V0 ≈ 0.75 m/s.
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Sensitivity bounds from RHP poles/zeros

The sensitivity function must be 1 at a RHP zero z:

P(z) = 0 ⇒ S(z) :=
1

1 + P(z)
︸︷︷︸

0

C(z)
= 1

Similarly, the complementary sensitivity function must be 1 at an

unstable pole p :

P(p ) = ∞ ⇒ T(p ) :=
P(p )C(p )

1 + P(p )C(p )
= 1
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The Maximum Modulus principle

Suppose that all poles of the rational function G(s) have negative

real part. Then

sup
ω∈R

|G(iω)| ≥ |G(s)|

for all s in the right half-plane.
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Limits on specifications on S

Theorem:

Given stable WS(s) and S(s) = (1 + L(s))−1, the specification

∥WSS∥∞ ≤ 1

can be met only if |WS(z)| ≤ 1 for every RHP zero z of L(s).

Proof:

∥WSS∥∞ = sup
ω∈R

|WS(iω)S(iω)| ≥ |WS(s)S(s)|

for all s in RHP. For s = z, the right hand side becomes |WS(z)|,

which in turn gives the necessary condition above.
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Limits on specifications on T

Theorem:

Given stable WT (s) and T(s) = (1 + L(s))−1L(s), the specification

∥WTT ∥∞ ≤ 1

can be met only if |WT (p )| ≤ 1 for every RHP pole p of L(s).

(Proof is analogous to the one above)
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Example: Limitation from RHP zero

Assume the sensitivity specification WS(s) =
s + a

2s
, a > 0.

|W
−

1
S
|

10
−2

10
−1

10
0

10
1

a

If the plant has a RHP zero in z, then ∥WSS∥∞ ≤ 1 is impossible to

fulfill unless !
!
!
!

z + a

2z

!
!
!
!
≤ 1 ⇔ a ≤ z

(“Closed loop must be slower than z for reasonable robustness, Ms ≤ 2”)
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Example: Limitation from unstable pole

Assume the compl. sensitivity specification WT =
s + b

2b
, b > 0

|W
−

1
T

|
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If the plant has an unstable pole in p , then ∥WTT ∥∞ ≤ 1 is

impossible to fulfill unless
!
!
!
!

p + b

2b

!
!
!
!
≤ 1 ⇔ b ≥ p

(“Closed loop must be faster than p for reasonable robustness, Mt ≤ 2”)
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RHP zero and unstable pole

For a system with both RHP zero z and unstable pole p it can be

shown that

Ms = sup
ω

|S(iω)| ≥

!
!
!
!

z + p

z − p

!
!
!
!

(See lecture notes for details)

If p ≈ z the sensitivity function must have a high peak for every

controller C.

Example: Bicycle with rear wheel steering

θ(s)

δ(s)
=

amℓV0

bJ
·
(−s + V0/a)

(s2 − mgℓ/J)

Automatic Control LTH, 2018 Lecture 7 FRTN10 Multivariable Control

Lecture 7 – summary

Bode’s Relation and Bode’s Integral

Limitations from unstable poles, RHP zeros and time delays

Rules of thumb for achievable ωc

Limitations on specifications on Sand T from unstable zeros

and poles: Hard proofs using Maximum Modulus principle

Example: Back-wheel steering bicyle – pole and zero i RHP
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