LUNDS

UNIVERSITET

Lecture 7
FRTN10 Multivariable Control
Automatic Control LTH, 2018




Course Outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance

@ Controllability/observability, multivariable
poles/zeros

@ Fundamental limitations

@ Decentralized control

L9-L11 Controller optimization: analytic approach
L12-L14 Controller optimization: numerical approach

L15 Course review
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Lecture 7 - Outline

e Bode’s Relation and Bode’s Integral
e Limitations from RHP poles/zeros and delays: insights from loop shaping

a Limitations from RHP poles/zeros: Hard proofs
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Limitations in control design

What we already know:
@ Model uncertainty, measurement noise, and control signal
limitations give upper limits on the achievable bandwidth
@ S+ T =1, which implies
[S(w)| + |T(w)| = 1
|ISGiw)| - IT(iw)l| < 1

@ Some modes may be impossible to control or observe due to
lack of controllability or observability
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Limitations in control design

Fundamental limitations:

@ Bode’s Relation: amplitude and phase are coupled

@ Bode’s Integral: |S(iw)| (and |T(iw)|) cannot be made small
everywhere

@ Limitations from non-minimum-phase elements:

o unstable poles
@ right-half-plane (RHP) zeros
o time delays
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Lecture 7 - Outline

a Bode’s Relation and Bode’s Integral
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Recall: Loop shaping

The loop transfer function L = PC should be made large at low
frequencies and small at high frequencies:

&
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Disturbance rejection

How quickly can we make the transition from high to low gain and
still retain a good phase margin?
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Recall: Amplitude and phase are coupled
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If G(s) is minimum phase (no RHP poles/zeros or time delays) then
mdlog|G(iw)|

arg Giw) ~ 2 dlogw

Automatic Control LTH, 2018 Lecture 7 FRTN10 Multivariable Control



Bode’s Relation

If G(s) is minimum phase, then
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Consequence for phase margin

For minimum-phase systems, to have a phase margin between
30° and 60°, the slope of the amplitude curve should be between
approx. —1.67 and —1.33 at the cross-over frequency.
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Bode’s Integral - stable system

For a stable system with loop gain L(s) with relative degree > 2
the following conservation law for the sensitivity function
S(s) = (1 + L(s))! holds:

/ log |S(iw)|dw =0
0

(Sometimes known as the "waterbed effect")
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Example

P-control of (s? + s + 1)~}

Sensitivity Function
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Bode’s Integral - general case

For a system with loop gain with relative degree > 2 and unstable
poles pi, ..., pym, the following conservation law for the sensitivity
function holds:

00 M
1 Stiw)ldw = Re(p;
/O 0g|S(iw)]dw nzl] (i)

(There exists a similar condition relating T'(s) and RHP zeros, see
the lecture notes.)
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G. Stein: "Conservation of dirt!"

Serious Design
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Figure 3. Sensitivity reduction at low frequency unavoidably
leads to sensitivity increase at higher frequencies.

Picture from Gunter Stein’s Bode Lecture (1985) “Respect the unstable”. Reprint
in IEEE Control Systems Magazine, Aug 2003.
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Lecture 7 - Outline

a Limitations from RHP poles/zeros and delays: insights from loop shaping
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Non-minimum-phase systems

A transfer function G(s) can be factored as
G(S) = Gmp(s) Gnmp(s)
such that

@ G, (s) only contains minimum-phase elements
@ Gpmp(s) contains non-minimum-phase elements and has
¢ unit magnitude: |G mp(iw)| = 1

@ negative phase: arg G, (iw) < 0
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Non-minimum-phase elements

Pole in the right half-plane at p:

s+
Gnmp(s) = P
s=p
Zero in the right half-plane at z:
Z—s
G =
nmp(s) s+7z

Time delay of length L:

Gnmp (s) = etk
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Insights from loop shaping

The minimum-phase part of the system can be shaped to our
liking, to achieve a suitable cross-over frequency w. and phase
margin ¢,,. However,

@ An RHP pole p decreases the phase by > 90° for w < p. To
retain a reasonable phase margin, we must have w. > p.

@ An RHP zero z decreases the phase by > 90° for w > z. To
retain a reasonable phase margin, we must have w, < z.

@ Atime delay L decreases the phase by wL. To retain a
reasonable phase margin, we must have w. < ”T/z ~ %.
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Example: Rear-wheel steering bike
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Bike example
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Bike example, cont’d

2
J% = mglf + m‘ff (VO,B + a%)
where the physical parameters have typical values as follows:

Mass: m =70kg
Distance rear-to-center: a=03m
Height over ground: {=12m
Distance center-to-front: b=0.7m
Moment of inertia: J =120 kgm2
Speed (reverse sign if rear-wheel steering): V=5 ms~!
Acceleration of gravity: g =981 ms ™2

The transfer function from g to 6 is

mVpof as+Vy

p(s)= 00 2T 0
(s) b Js*—mgt
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Bike example, cont’d

The system has an unstable pole at

mgft
=4/— =25
PENTT

The closed-loop system must be at least as fast as this. Moreover,
the transfer function has a zero at

For the back-wheel steered bike we have the same pole but
different sign of V and the zero will thus be in the RHP!

An unstable pole-zero cancellation occurs for Vy ~ 0.75 m/s.
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Lecture 7 - Outline

9 Limitations from RHP poles/zeros: Hard proofs
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Sensitivity bounds from RHP poles/zeros

The sensitivity function must be 1 at a RHP zero z:

1

I+ P CQ)
——
0

P(z)=0 = S(z) :=

Similarly, the complementary sensitivity function must be 1 at an
unstable pole p:

3 _ P()C(p)
P(p)=c0 = T(p).——1+P(p)C(p)—
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The Maximum Modulus principle

Suppose that all poles of the rational function G(s) have negative
real part. Then

sup |G(iw)| = |G(s)]

weR

for all s in the right half-plane.
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Limits on specifications on §

THEOREM:

Given stable Wg(s) and S(s) = (1 + L(s))"!, the specification
”WSS”oo <1

can be met only if |[Wg(z)| < 1 for every RHP zero z of L(s).
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Limits on specifications on §

THEOREM:

Given stable Wg(s) and S(s) = (1 + L(s))"!, the specification
”WSS”oo <1

can be met only if |[Wg(z)| < 1 for every RHP zero z of L(s).

Proof:
WsSlleo = SH%IWs(iw)S(iw)l > [Ws(s)S(s)]
wE

for all s in RHP. For s = z, the right hand side becomes |Ws(z)|,
which in turn gives the necessary condition above.
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Limits on specificationson T

THEOREM:

Given stable Wy (s) and T(s) = (1 + L(s))"'L(s), the specification

can be met only if |[Wr(p)| < 1 for every RHP pole p of L(s).

(Proof is analogous to the one above)
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Example: Limitation from RHP zero

s+ a
Assume the sensitivity specification Wg(s) = —, @ > 0.
N

a

If the plant has a RHP zero in z, then ||WsS||e < 1 is impossible to
fulfill unless
Z+a

27

<1 & a<z
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Example: Limitation from RHP zero

s
Assume the sensitivity specification Wg(s) = —, 0
10'
= 10°
| \
=
107
107
a

If the plant has a RHP zero in z, then ||WsS||e < 1 is impossible to
fulfill unless
Z+a

27

&S aslz

(“Closed loop must be slower than z for reasonable robustness, M; < 2")
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Example: Limitation from unstable pole

s+b
Assume the compl. sensitivity specification Wp = ——, b > 0

2b

b

If the plant has an unstable pole in p, then |WrT||o < 1is
impossible to fulfill unless

p+b
2b

<1 & b2p
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Example: Limitation from unstable pole

s+b
Assume the compl. sensitivity specification Wp = ——, b > 0

2b

b

If the plant has an unstable pole in p, then |WrT||o < 1is
impossible to fulfill unless

p+b
2b

<1 & b2p

(“Closed loop must be faster than p for reasonable robustness, M; < 2”)
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RHP zero and unstable pole

For a system with both RHP zero z and unstable pole p it can be
shown that

M; = sup [S(iw)| >
w

Z+p‘

(See lecture notes for details)
If p = z the sensitivity function must have a high peak for every

controller C.

Example: Bicycle with rear wheel steering

@ _amlVy . (=s +Vy/a)
8(s)  bJ (2 —mgl]J)
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Lecture 7 - summary

@ Bode’s Relation and Bode’s Integral

@ Limitations from unstable poles, RHP zeros and time delays
@ Rules of thumb for achievable w,

@ Limitations on specifications on S and T from unstable zeros
and poles: Hard proofs using Maximum Modulus principle

@ Example: Back-wheel steering bicyle — pole and zero i RHP
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