Lecture 5 - Outline Case Study: Control of a DVD player

The DVD player process

e Case study: Control of a DVD player Problem formulation
Q Review of cascade and midranging control Modeling

Specifications

Focus control loop shaping

¢ © 6 ¢ ¢ ¢

Radial control (track following)

Based on work by Bo Lincoln
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The DVD player tracking problem The DVD player tracking problem

Scaled version of the control task in a DVD player: ‘Track\
‘ @ 3.5 m/s speed along track
‘ ) ® 0.022 um tracking tolerance
@ Imagine that you are traveling at half the speed of light, . ‘Plt @ 100 um deviations at 10-25 Hz

along a line from which you may only deviate 1 m due to asymmetric discs

@ The line is not straight but oscillates up to 4.5 km sideways . ,\’

up to 25 times per second 0.74 um

DVD Digital Versatile Disc, 4.7-8.5 GB
Good luck! CD Compact Disc, 650-800 MB
Blu-ray 25-400 GB

Automatic Control LTH, 2018 Lecture 5 FRTN10 Multivariable Control Automatic Control LTH, 2018 Lecture 5 FRTN10 Multivariable Control



The DVD Pick-Up Head

Sledge

Pick—-up head
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Input-output diagram for DVD control

Vertical Force
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Radial Force
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Focus Error
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Radial Error
—
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Radial electromagnet
——
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The four photo detectors

C
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focus error = (A+D) - (B+C)

Note: There are no other sensors in the pick-up head to help keep the
laser in the track.
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Focus error signal

Possible to see tracks

Focus Error

Correct focus

Lens height

Too low Too high
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Radial error by phase difference

‘ Radial Error

Pit

fi=A+D, h=B+C

Error signal RE created by time difference
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Radial erro

r by push-pull

Look at
(A+C)
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Radial error signals
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Correct radial position
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Note: Larger linear error region if using phase difference.
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Focus control design Focus process model

Model obtained using system identification:

w % - Bode diagram
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@ What blocks and signals are relevant for focus control? s L. ‘ ‘ ‘ M

10° 10° 10* 10°
@ What disturbances are there? Frequency (rad/sec)

63168 — s
P(s) = 6092
52 + 15535 + 718214
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From DVD standard ECMA-267 Specifications
Gain (dB)
86,0 1
66,0
62,3
). @ Cancel disturbances due to disc asymmetry
40,61
|P(iw)C(iw)| = 2000 for f <23 Hz
0
L : : s . @ Robustness towards model errors, rejection of meas. noise
9,6 23,1 100 10 000
Frequency (Hz)
- |Piw)C(iw)| < 1 for f > 2 kHz

Figure 3 - Reference Servo for axial tracking
Bandwidth 100 Hz to 10 kHz
| 1+H | shall be within 20 % of | 1+H]|.

The crossover frequency f, = w, / 2n shall be specified by equation (II), where oy, shall be 1,5 times larger than . i
the expected maximum axial acceleration of 8 m/s2. The tracking error ep,y shall not exceed 0,23 um. Thus the [*] GOOd Sta bl | Ity ma I'g NS

crossover frequency f, shall be
1 3¢ 1 8x15x%3
fo=— B . — [ =2,0kHz (I
27\ €max 2m \ 0,23 x 10

http://www.ecma-international.org/publications/standards/Ecma-267.htm

(Compare to the bit rate, which is in the order of 1 MHz)
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Open-Loop System Add Lag Compensator

Bode plot of P(S) with stability margins and specifications: Use lag filter with M = 15 to increase gain below 23 Hz. The break
Bode Diagram point needs to be well below 2 kHz in order to avoid excessive
- = 0.4037(s+1885
o8 E<3|m_0.255 (at 9‘.94e+03 rad/s) , FTm_ 13.2 deg (at‘2.01e+04 rad/s) phase |ag at the cross-over frequency: C = KClag - %
5 Bode Diagram
g 5 Gm = 0.0277 (at 2.26e+03 rad/s), Pm =-12.2 deg (at 1.26e+04 rad/s)
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Can a P-controller solve the problem? Frequency (rad/s)
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Add Lead Compensator Add Another Lag Compensator
Use lead filter with N = 12 to increase phase by 57° at cross-over Low-frequency gain too low. Add another lag compensator with
_ _ 1.398(s+1885)(s+3228) . _ 2 _ 1.398(s+1885)%(s+3628)
frequency. C = KCiagCread = ~(55135.7(+43530) same parameters: C = K€, Cread = ~1135 775243530)
Bode Diagram Bode Diagram
Gm = 4.63 (at 4.84e+04 rad/s) , Pm = 45.6 deg (at 1.27e+04 rad/s) Gm = 4.4 (at 4.64e+04 rad/s), Pm = 37.7 deg (at 1.28e+04 rad/s)
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Final Adjustments Final Controller

Phase margin too small again. Lower the break frequency of the Bode diagram of final controller
lag filters to recover some phase: C=KC? Cioa = 1.397(s+1005)*(s+3628)
C=KC2 Co = 1.397(s+1005)2(s+3628) lag ™ ted (5+67.02)(s+43530)
= B Vlaglead = T(167.02)2(s+43530) Bode Diagram
2 T
Bode Diagram 10
Gm = 4.65 (at 4.82e+04 rad/s), Pm = 45.1 deg (at 1.26e+04 rad/s) g
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Frequency (rad/s) (Could add another pole to have high-frequency roll-off)
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Gang of Four Response to impulse load disturbance
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Radial control

Make the laser follow the track by moving “sideways”/radially

It is essential to solve the Focus control problem first

Tracking via two parallel actuators (midranging):
@ Move lens (electromagnet/fast motion)
@ Move sledge (slow/large range)
Disturbances:

@ eccentricity (up to 100 tracks in one rotation)
@ physical vibrations of DVD player
@ noise, dirt, etc.
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Experimental radial dynamics model

An estimated transfer function for the radial servo (from the
control signal u to the radial error RE)

Bode Diagram

100

Magnitude (dB)
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System identification made by sinusoidal excitation.
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Track position
A

Eccentricity

The disc is often a bit eccentric (i.e. not rotating around the track
center). The resulting track position, which the Pick-Up-Head has
to follow, is sinus-like.
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From DVD standard ECMA-267

Gain (dB)‘
89,2

69,2
67,1

473
43,7

9,6 23,1 100 10 000
Frequency (Hz)

9500984

Figure 4 - Reference Servo for Radial Tracking

Similar requirements as for the axial (focus) tracking

Many possible design methods (loop shaping, pole placement,
LQG)
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4 Problem with sinusoidal output disturbance Stochastic disturbance modeling

w2
The eccentricity causes problems (at about 10-25 Hz and

T (—

magnitude up to 100 tracks). Cannot be exactly modeled due to "
uncertainty. v
u RE
Oscillation P
VAV,
u LY RE . . . .
» C P —> Noise model: There is both white process noise wy, and a track
offset, which is modeled as the white noise w, through a filter H.
L The filter H should have a high gain in the frequency range where
the oscillation acts (bandpass filter)
Kalman filter + state feedback then solves the problem elegantly
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Further reading Lecture 5 - Outline

@ Lecture notes on course web page

@ "Sensing and Control in Optical Drives — How to Read Data
from a Clear Disc" by Amir H. Chaghajerdi, June 2008, IEEE
Control Systems Magazine, pp. 23-29,

9 Review of cascade and midranging control

http://www.ieeecss.org/CSM/library/2008/june@8/11-June@8ApplicationsOfControl.pdf
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Cascade control

For systems with one control signal and two measurement
signals:

= Cols) [ a P e =] pao =2

@ Ci(s) controls the subsystem P;(s)
o Fastinner loop, Gy, (s) = 1

@ (C;(s) controls the subsystem P>(s)
@ Slow outer loop
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Midranging Control - Example

Radial control of pick-up-head of DVD player

Radial electromagnet
—_—

I Light detectors
Focus electromagnet

The pick-up-head has two electromagnets for fast positioning of the lens
(left). Larger radial movements are taken care of by the sledge (right).
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Midranging Control

For systems with one measurement signal and two control signals
(e.g. one large-range/slow and one small-range/fast actuator)

Tuy u
— -1 Ca(s) Pa(s) ‘
- u y
2 Ci(s) ] Pi(s) —>@——>
-1

@ Ci(s) controls the process output y with fast actuator u;

@ C»(s) controls u; to the middle of its operating range using
slow actuator u; (note reverse gain)
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