Lecture 3 - Outline A basic control system

ro 4
o Control system specifications |
9 Disturbance models )
@ Stochastic processes !
,,,,,,,,, Controller . | Process |
@ Filtering of white noise
@ Spectral factorization @ Controller: feedback C, feedforward F

@ Process: transfer function P
@ Process/load disturbance d: drives system from desired state
@ Controlled process variable z: should follow reference r

@ Measurement noise n: corrupts information about z
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A more general setting Design specifications

Process disturbances need not enter at the process input, and
measurement noise and setpoint values may also enter in different

Find a controller that

ways. More general setting: A: reduces the effect of load disturbances
B: does not inject too much measurement noise into the system
controlled variables z exogenous signals w C: makes the closed loop insensitive to process variations
I Plant o D: makes the output follow the setpoint
) Common to have a controller with two degrees of freedom
controller inputs y controller outputs u (2 DOF), i.e. separate signal transmission from y to u and from r
» Controller to u. This gives a nice separation of the design problem:

@ Design feedback to deal with A, B, and C

. . . . @ Design feedforward to deal with D
We will return to this setting later in the course

Automatic Control LTH, 2018 Lecture 3 FRTN10 Multivariable Control Automatic Control LTH, 2018 Lecture 3 FRTN10 Multivariable Control



Relations between signals

Atomic Force Microscope d n
CONTROL UNIT r e u Z y
w70 1 [t — F — ¢ P —
PHOTO -1
DIODE
CANTILEVER : : Z _ P D _ PC N " PCF R
__ 1+ PC 1+PC 1+ PC
SAMPLE _«© Vg Y _ P D N 1 N PCF
T 1+PC 1+PC 1+PC
Only the control error can be measured PC C CF
= - + R
Design of disturbance attenuation and setpoint response cannot v 1+ PC 1+ PC 1+ PC

be separated
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The “Gang of Four” / “Gang of Six” Some observations

Four transfer functions are needed to characterize the response to
load disturbances and measurement noise: o
@ To fully understand a control system it is necessary to look at

rc P all four or six transfer functions
1+PC 1+ PC

C 1 @ It may be strongly misleading to show properties of only one
1+ PC 1+ PC or a few transfer functions, for example only the response of

. i . the output to command signals. (This is a common error.)
Two more are required to describe the response to setpoint

changes (for 2-DOF controllers): @ The properties of the different transfer functions can be

PCF CF illustrated by their frequency or time responses.
1+PC 1+PC
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Example: Frequency Responses Example: Time Responses

Pl control (K, = 0.775, T; = 2.05) of P(s) = (s + 1)~* with Pl control (K, = 0.775, T; = 2.05) of P(s) = (s + 1)~* with
Gy, (s) = (0.5s + 1)~*. Gain curves: Gy, (s) = (0.5s + 1)~. Step responses:
PCF/(1 + PC) PC/(1+ PC) P/(1+ PC) PCF/(1 + PC) PC/(1 + PC) P/(1+ PC)
15 15 15
10° 10° 10° | | ]
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104 1 0 1 104 1 0 1 104 1 0 1
107 0 10 107 10 10 10 10 10 10 20 30 0 10 20 30 0 10 20
cr/(% po) C/(1'+ PC) . 1/(1+ PC) CF/(1+ PC) C/(1+PC) 1/(1+ PC)
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Time responses—an alternative A warning

Responses to setpoint step, load disturbance step and random
measurement noise: Remember to always look at all responses when you are dealing
with control systems. The step response below looks fine, but. .. J

15 T T T
4 7/ )*\ J\ I

>\ 1
05+ , g

% 10 2 % 20 50 % Response of y to step in r

0.5}

Error feedback (dashed), 2-DOF controller (full) 0

One plot gives a good overview!
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A warning - Gang of Four

Step responses:

PC/(1 + PC) o P/(1+ PC)

60

0.5 40
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c/( + PC) i 1/{1 + Po)
0.5
0 -0.5
-0.5
1 1
0 1 2 3 4 5 0 1 2 3 4 5

Unstable output response to load disturbance. What is going on?
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Lecture 3 - Outline

9 Disturbance models
@ Stochastic processes
@ Filtering of white noise

@ Spectral factorization
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A warning - The system

1
Process: P(s) =

5%
|
—

5%
|
—

Controller: C(s) =

(cancels the unstable process pole!)

Response to reference change:

PC 1
1+PC s+1

Gyr(s) =

Reference to load disturbance:

S N

P
1+PC 2-1 (s+1)(s—1)

Gyd(s) =

The control system is not internally stable!
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Two main types of disturbances

Process (or load) disturbances d

@ Disturbances that affect the controlled process variables z

o d,, measurable, can use feedforward to cancel them
@ d,, unmeasurable, must use feedback. Controller should have
high gain at the dominant frequencies to supress them

Measurement disturbances n

@ Disturbances that corrupt the feedback signals

@ Controller should have low gain at the dominant frequencies
to avoid being “fooled”
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Disturbance models Mini-problem

What linear systems G(s) can generate the following deterministic
Deterministic disturbance models, e.g., impulse, step, ramp, disturbances?
sinusoidal signals

@ Can be modeled by Dirac impulse filtered through linear @ Astep
system

Stochastic disturbance models
@ Aramp
@ Common model: Gaussian stochastic process

@ Can be modeled by white noise filtered through linear system

@ Reasonable model for many real-world random fluctuations
@ A sinusoidal
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Stochastic process - definition Gaussian processes

A stochastic process is a family of random variables {x(t),z € T} We will mainly work with zero-mean stationary Gaussian

Can be viewed as a function of two variables, x = x(t, w): processes.
@ Fixed w = wy gives a time function x(-, wg) (realization)

Mean-value function:
@ Fixed t = t; gives a random variable x(#;, ) (distribution) my =B x(t)=0

e A realization Covariance function:
x(, @)
re(t) = Ex(t + T)x(t)T

F(&.t) (- @y) Cross-covariance function:

roy(7) = Ex(t + 7)y(t)"

/’—\_/\x

t t A zero-mean stationary Gaussian process is completely

. e characterized by its covariance function.
For a Gaussian process, x(f, -) has a normal distribution y
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Spectral density

The spectral density or spectrum of a stationary stochastic
process is defined as the Fourier transform of the covariance
function:

O, (w) = [00 re(t)e @ dt

(o]

@ Describes the distribution of power over different frequencies

By inverse Fourier transform

re(t) = 1 ‘/00 ', (w) dw

27 J o

In particular, the stationary (co)variance is given by

1 [ee]
Ex(t)xT(t) = re(0) = — D, (w)dw
21 J_ s
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White noise

White noise with intensity R, is a random process w with
constant spectrum
Dy (w) =Ry,

@ Variance is infinite — not physically realizable
@ Can be interpreted as a train of random Dirac impulses

@ When filtered through a stable LTI system, the output is a
zero-mean stationary Gaussian process
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Covariance fcn, spectral density, and realization
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1
10
2
oF——=—-=-= 0
0.1 -2
-1
0 10 0.01 1 0 50
1 10
2
oF = 0
0.1 N -2
-1
0 10 0.01 1 0 50
1 10
2
0 = 0
0.1 \ -2
-1
0 10 0.01 1 0 50
1 10
2
O ¥ — # — 0
0.1 -2
-1
0 10 0.01 1 0 50
T w Time
Automatic Control LTH, 2018 Lecture 3 FRTN10 Multivariable Control

Filtering of white noise

G(s) FP——

—| i=Ax+Bw [—

Assume w white noise with intensity R,,. Two modeling/analysis
problems:

@ Given G(s) (or (A, B, C, D)), calculate the spectral density or
stationary variance of y (or x)

@ Conversely, given the spectral density of y, determine a
stable G(s) that generates that spectrum

@ Known as spectral factorization
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G(s)

Given stable G(s) and input w with the spectral density ®,,(w).
Then output y gets the spectrum

Dy (w) = Giw)Dy(w)G*(iw)

Special case: If w is white noise with intensity R,,, then

Oy (w) = G(iw)R,, G (iw)
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alculation of stationary covariance - state-space form

Theorem 3.1

Given a stable linear system with white noise input

X = Ax + Bw, D, (w) = Ry

then the stationary covariance of x is given by

1 o0
Exx! = 2—/ D, (w)dw =TI,
T oJ-0o

where I1, = Hf > 0 is given by the solution to the Lyapunov
equation
All, + I, AT + BR,,BT =0
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-, Calculation of spectrum - state-space form

— | X=Ax+Bu [—™

Assume a stable linear system with white noise input
X = Ax + Bw, O, (w) = Ry
The transfer function from w to x is
G(s)=(sI-A)'B
and the spectrum for x will be
O, (w) = (iwl — A)"'BR,, B*(-iwl — A)T
G*(iw)
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Calculation of covariance - example

Consider the system

. =1 2 |x 1
X =Ax+ Bw —[_1 O} [x2}+[0}w

where w is white noise with intensity 1.

What is the stationary covariance of x?
First check the eigenvalues of A: A = —% + ig e LHP. OK!
Solve the Lyapunov equation AIl, + I, AT + BR,, BT = 0,,.
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Example cont’d Spectral factorization

All, + IT, AT + BR,,BT = 0,.»

Find ILy: Theorem 3.2
[—1 2] [Hll le} N [Hll ITy2 [—1 -1 N 1 1 0] = Assume that the scalar spectral density function ®,,(w) > 0Ois a
-1 0] |2 I M Ixp||2 0 0 rational function of w? and finite for all w. Then there exists a

rational function G(s) with all poles in the left half-plane and all

zeros in the left half-plane or on the imaginary axis such that

_ 2(—1_[11 + 2H12) +1 —=IIjp + 2Iy — Iy _ 0 0
| =Typ + 20 = 1y 21112 00

D, (w) = |G(iw)* = G(iw)G(-iw)
Solving for I1;1, IT;; and I, gives

1, = [Hn le} _ [1/2 0 ] 50

Matlab: lyap([-1 2; -1 0], [1; @1x[1 @1)
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Spectral factorization — example Lecture 3 - summary

Find a stable, minimum-phase filter G(s) such that a process y
generated by filtering unit intensity white noise through G gives
@ Look at all important closed-loop transfer functions: Gang of

2
Dy (w) = —2 +4 four / gang of six
Y w*+10w? + 9’ . L . .
@ White noise filtered through LTI system gives Gaussian
Solution. We have stochastic process - simple but useful disturbance model
) @ Calculation of spectrum and stationary covariance given
w* +4 iw+2 generating system

(Dy(w) =

(W? + D(w? +9) (iw+ D(iw + 3) @ Calculation of generating system given spectrum (spectral

. . factorization)
implying 5
s+

R
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