Lecture 2 - Outline Stability is crucial

© stavility

g Sensitivity and robustness Examples:
© The Small Gain Theorem @ bicycle
@ singular values @ JAS 39 Gripen

@ Mercedes A-class
@ ABS brakes
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Input-output stability Input-output stability of LTI systems

u y =8(u)
’ S ’ For an LTI system S with impulse response g(¢) and transfer
function G(s), the following stability conditions are equivalent:
A general system S is called input-output stable (or “L, stable” @ ||S|| is bounded

or “BIBO stable” or just “stable”) if its L, gain is finite: o 2(r) decays exponentially

N @ All poles of G(s) are in the left half-plane (LHP), i.e., all poles

ISII = Sup Tl < o0 have negative real part
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Internal stability Internal vs input-output stability

If
X =Ax+ Bu
The LTI system
y=Cx+Du
% = Ax + Bu is internally stable then
y=Cx+ Du G(s)=C(sI-A)'B+D
is called internally stable if the following equivalent conditions is input-output stable.
hold:
@ The state x decays exponentially when u = 0 Warning

The opposite is not always true! There may be unstable pole-zero
cancellations (that also render the system uncontrollable and/or
unobservable), and these may not be seen in the transfer function!

@ All eigenvalues of A are in the LHP
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Stability of feedback loops Simplified Nyquist criterion

Assume scalar open-loop system Gy(s)
If Go(s) is stable, then the closed-loop system [1 + Gy(s)]~! is stable

if and only if the Nyquist curve of Gy(s) does not encircle —1.
Go(s) >
2 1
<
—1 e N

g or
(o))
£

The closed-loop system is stable if and only if all solutions to the - -1

characteristic equation -1 -0.5 0 0.5

1+Go(s)=0 Real Axis
are in the left half-plane. (Note: Matlab gives a Nyquist plot for both positive and negative frequencies)
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General Nyquist criterion Sensitivity and robustness

Let ® How sensitive is the closed-loop system to model errors and

disturb ?
@ P = number of unstable (RHP) poles in Gy(s) Isturbances

@ N = number of clockwise encirclements of —1 by the Nyquist

plot of Go(s) ® How do we measure the “distance to instability”?

i} -1
Then the closed-loop system [1 + Go(s)]™ has P+ N unstable poles @ Is it possible to guarantee stability for all systems within some

distance from the ideal model?
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Amplitude and phase margins Mini-problem
Amplitude margin A,,: k(s +1) 5L
. o . s2+cs+1
arg Go(la)o) = —-180°, |G0(lwo)| = I/Am
Phase margin ¢,;:
IGoliwe)] = 1, arg Go(iwe) = @ — 180° -

Nominally k =1, ¢ = 1 and L = 0. How much margin is there in each

1 i
o e Y parameter before the closed-loop system becomes unstable?
oot A . Gm = Inf, Pm =109 deg (at 1.41 rad/s)
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Mini-problem Sensitivity functions

,
C(s) P(s) J
-1
S(s) ! sensitivity function
S) = —mm8@
1+ P(s)C(s) y
P(s)C
T(s) = (9)C(s) complementary sensitivity function

1+ P(s5)C(s)
Note that we always have

S(s)+T(s)=1

Automatic Control LTH, 2018 Lecture 2 FRTN10 Multivariable Control Automatic Control LTH, 2018 Lecture 2 FRTN10 Multivariable Control

Sensitivity towards changes in plant

: C(s) P(s) X r e u ‘ y y
C —*(%)—* P

= ®

Sensitivity towards disturbances

n

How sensitive is the closed loop to a (small) change in P?
Open-loop response (C = 0) to process disturbances d, v:

dr c 3 T
dP ~ (1+PC)? P(l1+PC) Y, =V +PD
Relative change in T compared to relative change in P: Closed-loop response:
ar/r 1 s 1 P
dP/P  1+PC Yo =156V o pcP =S¥
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Interpretation as stability margin Robustness analysis

The L, gain of the sensitivity function measures the inverse of the

distance between the Nyquist plot and the point —1: How large plant uncertainty A can be tolerated without risking
! instability?
R = sup —‘ =M
w |1+ Pliw)C(iw) ’ Example (multiplicative uncertainty):

A Im v w
A(s)

// \\
K -1 \
/ v
| \ - P(s)
'
\ ) R
| , e

—C(s)
P(iw)C(iw)
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The Small Gain Theorem Proof

r €l

e r er =ri +S2(r2 + Si(er))
i
llexll < flrill + ||32||(||r2|| +|[[Sull - ||€1||)
7l + 1Szl - [l72]]
lleill <

Assume that S| and S are stable. If ||S;]| - ||Sz]| < 1, then the L =[S - 1Sl
closed-loop system (from (r, r2) to (eq, e2)) is stable. . .
Psy ( (r1, 72) to (e1, €2)) This shows bounded gain from (ry, ;) to e;.
@ Note 1: The theorem applies also to nonlinear, time-varying, and

The gain to e, is bounded in the same way.
multivariable systems

@ Note 2: The stability condition is sufficient but not necessary, so the
results may be conservative
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Application to robustness analysis

% w
A(s)
T \% w
| >
P(s) —— A
—C(s) -PC
1+PC
The diagram can be redrawn as
. _ PC .
v w Assuming that T’ = ;1 is stable, The Small Gain Theorem
—0—> A guarantees stability if
AT < 1
-PC
1+PC
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Gain of multivariable systems Vector norm and matrix gain

For a vector x € C", we use the 2-norm

el = Ve = Va2 + ot 2

Recall from Lecture 1 that
(A* denotes the conjugate transpose of A)

[SII = sup |G(iw)| = [|Glle

For a matrix A € C"™™, we use the L,-induced norm
A *A*A —
||A]l := sup 1Ax| = sup\/u = 4/A(A*A)
x  |x] x x*x

A(A*A) denotes the largest eigenvalue of A*A. The ratio |Ax|/|x| is
maximized when x is a corresponding eigenvector.

for a stable LTI system S.

How to calculate |G(iw)| for a multivariable system?
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0 3

Example: Different gains in different directions: B;] = [2 4] [

Input u=[0.309  0.951]", |u]=1
!
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(red):eigenvectors ; (blue): V ; (green): U A=USV
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SVD example
>> A =1[24; 0 3]
Matlab code for singular value decomposition of the A= 5 4
matrix 0 3
2 4
A= 0 3 >> [U,S,V] = svd(A)
U=
SVD: 0.8416 -0.5401
A=U-S-V* 0.5401 0.8416
S =
where both the matrices U and V are unitary (i.e. have 5.2631 °
orthonormal columns s.t. V*V =T) and S is the diago- ° 1.1400
nal matrix with (sorted decreasing) singular values o;. V=
Multiplying A with an input vector along the first column 0.3198 -0.9475
inV gives 0.9475  0.3198
AV =USV* -V ) = >> ARV(:, 1)
1 ans =
=US|g| =Uen o1 4.4296
2.8424

That is, we get maximal gain o in the output direction
>> U(:,1)*S(1,1)
U,y if we use an input in direction V(. 1) (and minimal ans

gain o if we use the second column V. ) = V(. 2)). 4.4296
2.8424
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Singular Values

For a matrix A, its singular values o; are defined as

o =T

where A; are the eigenvalues of A*A.

Let o(A) denote the largest singular value and g (A) the smallest
singular value.

For a linear map y = Ax, it holds that

o(A) < Mz

x|~

The singular values are typically computed using singular value
decomposition (SVD):
A=UXV"
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Example: Gain of multivariable system

Consider the transfer function matrix

2 4
_ 1 2 1
G(s) = S‘; 53"'

s2+0.1s+1 s+1

>> s=zpk('s")
>> G=[ 2/(s+1) 4/(2*xs+1); s/(s*2+0.1xs+1) 3/(s+1)];
>> sigma(G) % plot sigma values of G wrt freq
>> grid on
>> norm(G,inf) % infinity norm = system gain
ans =
10.3577
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Singular Values

Lecture 2 - summary

10°
System: G

101 e ey 526 /\\ E
— a—
B T
§ E:yﬁséégf%;'ﬁizi?;?%"s L @ Input-output stability: ||S]|| < oo
© £ .
S o pm | e C L e._ dTJT _ ]
5 \\ @ Sensitivity function: § := P[P = T3PC
g

@ Small Gain Theorem: The feedback interconnection of S; and
. S, is stable if || S| - [|Sa]] < 1

o Conservative compared to the Nyquist criterion
@ Useful for robustness analysis

107 | | |
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Froquonoy (adiseo) @ The gain of a multivariable system G(s) is given by
sup,, 0(G(iw)), where 7 is the largest singular value

The singular values of the tranfer function matrix (prev slide). Note that
G(0)=[2 4 ; 0 3] which corresponds to A in the SVD-example above.
[|Glle = 10.3577.
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