
Lecture 1

Introduction∗

This first lecture has two parts. The first part gives an introduction and overview of the
course, starting from two examples of modern control, a DVD-reader and car dynamics. The
second part of the lecture is a brief review of linear input-output models in continuous time
used in the basic course. The concepts of signal norm and system gain are introduced.

1.1 First example: a DVD player

The appearance of cheap sensors, actuators and computing devices opens new application
areas for feedback control all the time, even in mass produced consumer products. The control
technology is mostly hidden to the user, but still critical for operation and performance. A
prime example of this is positioning of the pick-up head in an optical storage device such as
a DVD (digital versatile disc), where the speed of data recovery is directly correlated to the
control performance.
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Figure 1.1 The right picture shows pits forming tracks on the DVD surface.

The disk surface is reflective, so that laser light is reflected back. Data bits are represented
by pits of different lengths in tracks on the disk. These pits make the laser beam interfere
destructively with itself, and therefore the pits look black to the laser.

The surface velocity is constant (about 3.5 m/s), meaning that the disc should rotate at different
speeds depending on the current reading position. The challenge of the control problem is
related to the fact that only 0.022 µm deviations from the bit-track can be accepted. At the
same time, a disk is always slightly asymmetric, causing it to oscillate up to 100 µm per
rotation, and the rotation speed is up to 23 Hz (for single speed). The tracking controller must
compensate for this oscillation.

A typical DVD player has a pick-up-head consisting of a laser, an astigmatic lens, and a light
detector with four fields – see Figure 1.2. The lens is mounted on springs in the axial (focus)
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Lecture 1. Introduction

and radial direction, and can be moved by electromagnets. This way, the laser spot can be
moved very fast in a small range (a few hundred tracks sideways). The lens and laser are
mounted on the sledge, which can move over the whole disk (in radial direction), but with
much less precision and speed.
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Figure 1.2 The pick-up head has two electromagnets for fast positioning of the lens (left). Larger radial
movements are taken care of by the sledge (right).

Four light detectors are available to estimate the focus error and radial error of the lens.
Measurements are taken with a sampling frequency of 40 kHz and the DVD standard specifies
that the speed of control (cross-over frequency) must be at least 2.4 kHz.

It turns out that most of the main topics of this course are relevant for the solution of the
DVD control problem. Both the focus control and the disc tracking will be treated in a case
study in Lecture 5.

1.2 Second example: control of car dynamics

A modern car contains numerous micro-processors devoted to feedback control. For example,
feedback from oxygen sensors in the exhaust gas are needed for proper operation of the engine
and catalyzer. This is essential for fuel efficiency and to reduce the emission of polluting
exhaust gases.

Other feedback loops are used to improve safety, by controlling the brakes to prevent wheel-
locks and to prevent skidding on slippery roads. A simplified model for car dynamics is given
by the state space description

[

V̇

ṙ

]

= A
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+
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(u1 + u2 − u3 − u4) +
[
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]

δ

where V is lateral speed and r is angular velocity. There are five control signals, the steering
angle δ and the brake forces u1, u2, u3 and u4 on the four wheels.

The state is generally not available for direct measurement. Even if the angular velocity
of each wheel can be measured, there is always some discrepancy between the rotational
speed and the speed over ground. Hence the velocity of the car must be estimated based on
information from several sources and the remaining uncertainty must be taken into account
in the control algorithms.

A typical sampling frequency for speed measurements is a few milliseconds. This may sound
fast enough compared to typical car dynamics, but when the purpose is to prevent wheel-lock
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Figure 1.3 A modern car relies on feedback control for comfort, safety and fuel efficiency. The left picture
shows a test-car used in a research project together with DaimlerChrysler.

or accidents, a delay of a few milliseconds can in fact be a severe obstacle for proper control
performance.
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Figure 1.4 Input-output diagram for car dynamics control.

1.3 Course overview

The objective of the course is that the students should learn the basic principles for control of
systems with multiple inputs and outputs. A schematic picture of such a system is given below
in Figure 1.5. It is important to note that the dynamics of a real process is never known exactly.
Neither is it possible to precisely state the “true design objectives”. It is therefore necessary
to maintain a broader perspective on the engineering design problem, see Figure 1.6.

Everything starts with an idea about the purpose of the control task. In simple cases, it is
possible to directly come up with a solution proposal that can be tested experimentally and
be accepted, possibly after minor modifications. However, in a vast number of applications
costs and time can be reduced by analyzing or simulating a mathematical model before trying
real experiments. The purpose of the diagram is to illustrate this methodology. Note that
the arrows point in two directions. Failure in the experimental phase could not only require
reimplementation, but also new analysis, more accurate models, or even redefinition of the
control purpose.

Imagine stepping through the diagram in order to design a controller for car dynamics as
in the previous example. Suppose that a controller has been synthesized based on the given
two state model. Implementing a controller on a prototype car is costly, so a second step
would typically involve computer simulation. For this purpose a more complex and accurate
car model is needed, a model that is less transparent from a synthesis perspective but better
suited to reveal the deficiencies of a proposed controller. If the simulations fail, a reason could
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Figure 1.5 A multivariable control system. From [Boyd et al.: “Linear Controller Design: Limits of Perfor-
mance via Convex Optimization”, Proceedings of the IEEE, 78:3, 1990]

be that the two state model was too simple and that additional features need to be taken into
account in the synthesis phase. After a sequence of attempts, one could hope to find a solution
ready for experimental tests. Alternatively, persisting failures could be an indication that the
original goal was overly optimistic and impossible to achieve.

The main focus of this course is on the analysis/synthesis phase of the diagram in Figure 1.6
with particular emphasis on linear multi-input-multi-output systems. The outline and main
topics of the course are the following

• Design of scalar controllers

• Stability and robustness

• Fundamental system limitations

Experiment

Implementation

Synthesis

Analysis

Matematical model
and 

specification

Idea/Purpose

Figure 1.6 Schematic overview of the design process
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• Multi–input-multi–output systems

• Control design (LQ and LQG)

• Synthesis by convex optimization

Related courses on real-time control and implementation aspects, modelling, system identifi-
cation and nonlinear control can be found at http://www.control.lth.se.

During the first five lectures we look at the basic control loops and see how outputs and control
signals are affected by reference values and disturbances, similar to what was done in the
basic course. We build on material from that course, but make a deeper study of robustness
and performance evaluation in controller design. The first lab exercise is aimed at giving
practical training in scalar controller design by frequency domain loop shaping.

After this, we start with multivariable systems, look at poles, zeros, observability, controllabil-
ity, realizations, etc., and discuss how the previous ides can be applied to systems with several
inputs and outputs. There is a short intermezzo were we look at fundamental limitations
in controller design, and we also look at how some multivariable control problems can be
transfered to simpler control problems (decentralized and decoupled control). The second lab
exercise will deal with multivariable control of a system where the fundamental limitations
play an important role.

The second part of the course, lectures 9–14, continues along the lines of the textbook and
bring in the subject of optimization for controller design and synthesis. The theory of linear
quadratic (LQ) optimal control and Kalman filtering is a cornerstone of modern control. It
clarifies fundamental relationships between measurement accuracy, control authority and
achievable performance. Multivariable systems also fit in very nicely. Computer tools and
new optimization algorithms have come to play an increasingly important role. Some recent
research results developed at the department are taught in this section, in particular on
control synthesis based on convex optimization.

Finally, the course is concluded by a lab exercise devoted to Kalman filtering and LQ optimal
control of a mini segway process. Many of the main topics in the course are relevant for a
successful solution to this problem.

1.4 System representations

Mathematically, a system (see Figure 1.7) is a mapping from the input signal u(t) to the output
signal y(t), −∞ < t < ∞:

y = S(u)
A system S is

• causal if y(t1) only depends on u(t), −∞ < t ≤ t1, non-causal otherwise.

• static if y(t1) only depends on u(t1), dynamic otherwise.

• discrete-time if u(t) and y(t) are only defined for a countable set of discrete time instances
t = tk, k = 0,±1,±2, . . ., continuous-time otherwise.

• single-variable or scalar if u(t) and y(t) are scalar signals, multivariable otherwise.

u y

S

Figure 1.7 A general system S with input u and output y
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• time-invariant if y(t) = S(u(t)) implies y(t+τ) = S(u(t+ τ)), time-varying otherwise.

• linear if S(α1u1 +α2u2) = α1S(u1) +α2S(u2), nonlinear otherwise.

We will mainly deal with continuous-time linear time-invariant (LTI) systems in this course.
For LTI systems, the same input–output mapping S can be represented in a number of
equivalent ways, e.g.,

• linear ordinary differential equation

• linear state-space model

• transfer function

• impulse response

• step response

• frequency response

In this section, we will review some different ways of specifying the input-output relationship
of a finite-dimensional linear time-invariant system. This is a system that can be described
by a state space equation

ẋ = Ax+ Bu

y = Cx+ Du

The differential equation has the solution formula

y(t) = CeAt x(0) +
∫ t

0
CeA(t−τ)Bu(τ)dτ + Du(t)

Note that the formula remains valid for multivariable systems, i.e. when both u(t) and y(t)
are vector valued.

The map from u to y is linear provided that x(0) = 0. Introducing the impulse response �(t)
as

�(t) =
∫ t

0
CeA(t−τ)Bδ (τ)dτ + Dδ (t) = CeAt B+ Dδ (t)

the input-output map can be written as a convolution

y(t) =
∫ t

0
�(t− τ)u(τ)dτ = [� ∗ u](t)

In frequency domain, the convolution becomes multiplication

Y (s) = G(s)U(s)

and the Laplace transform of the impulse response is equal to the transfer function G(s) =
C(sI − A)−1 B + D. For multivariable systems, both �(t) and G(s) are matrices. The term
impulse response is of course motivated by the fact that the matrix element �i j(t) is the value
of output i obtained when input j is an impulse (Dirac function) at t = 0. This is sometimes
used to determine �(t) experimentally.
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A more common experiment in process industry is the step response. Assuming that the
(possibly vector valued) input is a step

u(t) =
{

0 t < 0

u0 t ≥ 0

the output becomes

y(t) =
∫ t

0
�(t− s)u0ds =

(
∫ t

0
�(τ)dτ

)

u0

Accordingly, the Laplace transform of the step response is G(s)u0/s.
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The main use of the Laplace transform is however to characterize the frequency response. The
input u(t) = u0 sinωt gives

y(t) =
∫ t

0
�(τ)u(t− τ)dτ = Im

[
∫ t

0
�(τ)e−iωτ dτ · eiωtu0

]
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The integral approaches G(iω) as t → ∞, so after a transient, also the output becomes
sinusoidal and y(t) = Im (G(iω)eiωt)u0. To summarize, a linear time-invariant system always
gives a sinusoidal response to a sinusoidal input. For a scalar system, the gain and phase
shifts are determined by the amplitude and phase of the complex number G(iω).
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There are several ways to graphically illustrate the transfer function G(iω). One is to plot the
amplitude and phase separately versus the frequency. This is called the Bode diagram:
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It should be noted that each additional factor in the transfer function contributes additively
to the Bode plots:

log pG1G2G3p = log pG1p + log pG2p + log pG3p
arg G1G2G3 = arg G1 + arg G2 + arg G3
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1.5 Signal norm and system gain

The Nyquist diagram is obtained by plotting G(iω) directly in the complex plane for different
values of ω:
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1.5 Signal norm and system gain

In order to efficiently analyze and optimize dynamical systems, it is useful to have mathemat-
ical notions that measure the size of a signal and the gain of a system. This is the reason for
the following definitions.

The size of a signal y(t) ∈ R
n can be measured by the L2 norm, defined as

qyq :=
√

∫∞

0
py(t)p2dt

According to a theorem known as Parseval’s formula, the same norm can be defined in
frequency domain as

qyq =
√

1
2π

∫∞

−∞
pLy(iω)p2dω

For a system S with input u, output S(u) and zero initial state, the L2 gain is defined as the
largest possible fraction between the input norm and the output norm:

qSq := sup
u

qS(u)q
quq

The system is called input-output stable (or L2 stable) if its L2 gain is finite. For example, a
time delay does not change the signal norm, so it has gain one. However, an integrator has
infinite gain, since an input u(t) that is identically zero for t ≥ 1, can give an output y(t) that
is a nonzero constant for t ≥ 1. Hence, the fraction qyq/quq can be arbitrarily large.

More generally, the L2 gain of a system can be obtained as the maximum amplitude in the
Bode diagram:

Theorem 1.1
A stable system with transfer function G(s) has the L2 gain

qGq∞ := sup
ω
pG(iω)p
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Proof. Let y be the output corresponding to the input u. Then

qyq2 = 1
2π

∫∞

−∞
pLy(iω)p2dω ≤ 1

2π

∫∞

−∞
pG(iω)p2 · pLu(iω)p2dω ≤ qGq2

∞quq2

The inequality is arbitrarily tight when u(t) is a sinusoid near the maximizing frequency.

Remark. For multivariable systems the pG(iω)p should be interpreted as the matrix norm (the
largest singular value) of G(iω). This case will be studied more carefully later.

Example 1

a. For a time delay G(s) = e−sT we have pG(iω)p " 1.

b. For an integrator pG(iω)p = p 1
iω
p = 1

ω
which is unbounded for ω = 0.

c. The Bode diagram plotted in the previous section has a peak magnitude about 0.5 at the
frequency 2 rad/s. Hence, the L2 gain of the corresponding system is smaller than one and
the highest gain is obtained for an input sinusoid of this frequency. ✷
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