
Lecture 1 – Outline

1 Course program

2 Course introduction

3 Signals and systems

System representations

Signal norm and system gain

Systems

u y

S

A system is a mapping from the input signal u(t) to the

output signal y(t), −∞ < t < ∞:

y = S(u)
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System properties

A system S is

causal if y(t1) only depends on u(t), −∞ < t ≤ t1,

non-causal otherwise

static if y(t1) only depends on u(t1),

dynamic otherwise

discrete-time if u(t) and y(t) are only defined for a countable

set of discrete time instances t = tk, k = 0, ± 1, ± 2, . . .,

continuous-time otherwise
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System properties (cont’d)

A system S is

single-variable or scalar if u(t) and y(t) are scalar signals,

multivariable otherwise

time-invariant if y(t) = S(u(t)) implies y(t + τ) = S(u(t + τ)),

time-varying otherwise

linear if S(α1u1 + α2u2) = α1S(u1) + α2S(u2),

nonlinear otherwise
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LTI system representations

We will mainly deal with continuous-time linear time-invariant

(LTI) systems in this course

For LTI systems, the same input–output mapping S can be

represented in a number of equivalent ways:

linear ordinary differential equation

linear state-space model

transfer function

impulse response

step response

frequency response

. . .
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State-space models

u y

x

S

Linear state-space model:

{

$x = Ax + Bu

y = Cx + Du

Solution:

y(t) = CeAt x(0) +

∫

t

0
CeA(t−τ)Bu(τ)dτ + Du(t)
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Mini-problem 1

$x1 = −x1 + 2x2 + u1 + u2 − u3

$x2 = −5x2 + 3u2 + u3

y1 = x1 + x2 + u3

y2 = 4x2 + 7u1

How many states, inputs and outputs?

Determine the matrices A, B,C,D to write the system as

{

$x = Ax + Bu

y = Cx + Du
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Mini-problem 1
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Change of coordinates

{

$x = Ax + Bu

y = Cx + Du

Change of coordinates

z = T x, T invertible

{

$z = T $x = T(Ax + Bu) = T(AT−1z + Bu) = T AT−1z + T Bu

y = Cx + Du = CT−1z + Du

Note: There are infinitely many different state-space

representations of the same input–output mapping y = S(u)
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Impulse response
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Common experiment in medicine and biology

g(t) =

∫

t

0
Ce

A(t−τ)
Bδ(τ)dτ + Dδ(t) = Ce

At
B + Dδ(t)

y(t) =

∫

t

0
g(t − τ)u(τ)dτ = (g ∗ u)(t)
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Step response
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Common experiment in process industry

y(t) =

∫

t

0
g(t − τ)u(τ)dτ =

∫

t

0
g(τ)dτ
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Transfer function

U (s) Y (s)
G(s)

G(s) = L{g(t)}

y(t) = (g ∗ u)(t) ⇔ Y (s) = G(s)U (s)

Conversion from state-space form to transfer function:

G(s) = C(sI − A)−1B + D
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Transfer function

A transfer function is rational if it can be written as

G(s) =
B(s)

A(s)

where B(s) and A(s) are polynomials in s

Example of non-rational function: Time delay e−sL

It is proper if deg B ≤ deg A and strictly proper if deg B < deg A

Example of non-proper function: Pure derivative s

A rational and proper transfer function can be converted to

state-space form (see Collection of Formulae)
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Frequency response
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Assume stable transfer function G = Lg. Input u(t) = sinωt gives

y(t) =

∫

t

0
g(τ)u(t − τ)dτ = Im

[
∫

t

0
g(τ)e−iωτ

dτ · e
iωt

]

[t →∞] = Im

(

G(iω)eiωt
)

= |G(iω)| sin
(

ωt + arg G(iω)
)

After a transient, also the output becomes sinusoidal
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The Nyquist diagram

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

arg G(iω)

|G(iω)|

Im G(iω)

Re G(iω)

Automatic Control LTH, 2018 Lecture 1 FRTN10 Multivariable Control

The Bode diagram
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G = G1G2G3

{

log |G | = log |G1 | + log |G2 | + log |G3 |

arg G = arg G1 + arg G2 + arg G3

Each new factor enters additively!
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The Bode diagram
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G = G1G2G3

{

log |G | = log |G1 | + log |G2 | + log |G3 |

arg G = arg G1 + arg G2 + arg G3

Each new factor enters additively!
Hint: Set Matlab units

>> ctrlpref
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Signal norm and system gain

u y

S

How to quantify

the “size” of the signals u and y

the “maximum amplification” between u and y
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Signal norm

The L2 norm of a signal y(t) ∈ Rn is defined as

∥y∥ =

√

∫ ∞

0
|y(t)|2dt

By Parseval’s theorem it can also be expressed as

∥y∥ =

√

1

2π

∫ ∞

−∞
|Y (iω)|2dω
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System gain

The L2 (or “L2-induced”) gain of a general system S with input u

and output S(u) is defined as

∥S∥ := sup
u

∥S(u)∥

∥u∥
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L2 gain of LTI systems

Theorem 1.1

Consider a stable LTI system S with transfer function G(s). Then

∥S∥ = sup
ω

|G(iω)| := ∥G∥∞

Proof. Let y = S(u). Then

∥y∥2
=

1

2π

∫ ∞

−∞
|Y (iω)|2dω =

1

2π

∫ ∞

−∞
|G(iω)|2 |U (iω)|2dω ≤ ∥G∥2

∞∥u∥
2

The inequality is arbitrarily tight when u(t) is a sinusoid near the

maximizing frequency.

(How to interpret |G(iω)| for matrix transfer functions will be explained in

Lecture 2.)
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Mini-problem 2

What are the L2 gains of the following scalar LTI systems?

1. y(t) = −u(t) (a sign shift)

2. y(t) = u(t − T) (a time delay)

3. y(t) =

∫

t

0
u(τ)dτ (an integrator)

4. y(t) =

∫

t

0
e
−(t−τ)

u(τ)dτ (a first order filter)
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Mini-problem 2

Automatic Control LTH, 2018 Lecture 1 FRTN10 Multivariable Control

Lecture 1 – Summary

Course overview

Review of LTI system descriptions (see also Exercise 1)

L2 norm of signals

Definition: ∥y∥ :=
√

∫ ∞

0
|y(t)|2dt

L2 gain of systems

Definition: ∥S∥ := supu
∥S(u)∥
∥u ∥

Special case—stable LTI systems: ∥S∥ = sup
ω
|G(iω)| := ∥G∥∞

(also known as the “H∞ norm” of the system)
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