
FRTN10 Multivariable Control, Course Summary

Automatic Control LTH, 2017

Course Summary

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach
L12-L14 Controller optimization: Numerical approach

Some Real-World Examples

Flexible servo resonant system
Quadruple tank system multivariable (MIMO), NMP zero
Rotating crane multivariable, observer needed

DVD control resonant system, wide frequency range, (midranging)
Bicycle steering unstable pole/zero-pair
Ball in hoop zero in origin

Course Summary

• Specifications, models and loop-shaping

○ Limitations on achievable performance

○ Controller optimization: Analytic approach

○ Controller optimization: Numerical approach

2-DOF control
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◮ Reduce the effects of load disturbances
◮ Limit the effects of measurement noise
◮ Reduce sensitivity to process variations
◮ Make output follow command signals

2DOF control
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U = −
PC

1+ PC D − C
1+ PC N +

C F
1+ PC R

Y =
P

1+ PC D + 1
1+ PC N +

PC F
1+ PC R

Important step responses
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Lag and lead filters for loop-shaping

C(s) = s+ 10
s+ 1 C(s) = 10(s+ 1)

(s+ 10)
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MIMO systems

If C, P and F are general MIMO-systems, so called transfer function
matrices, the order of multiplication matters and

PC ,= C P

and thus we need to multiply with the inverse from the correct side as in
general

(I + L)−1 M ,= M(I + L)−1

Note, however that

(I + PC)−1 PC = P(I + C P)−1C = PC(I + PC)−1

Different gains in different directions:
[

y1
y2

]

=

[

2 4
0 3
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u2
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Input u= [0.309     0.951]
T
,   |u|= 1
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(red):eigenvectors ; (blue): V ; (green): U    A=U*S*V
T
 

y
2

y=Gu = [4.42      2.85]
T
,      |y|= 5.26

Plot singular values of G(iω) versus frequency

» s=tf(’s’)
» G=[1/(s+1) 1 ; 2/(s+2) 1]
» sigma(G) % plot singular values

% Alt. for a certain frequency:
» w = 1;
» A = [1/(i*w+1) 1; 2/(i*w+2) 1]
» [U,S,V] = svd(A)
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Realization of multi-variable system
Example: To find state space realization for the system

G(s) =
[

1
s+1

2
(s+1)(s+3)

6
(s+2)(s+4)

1
s+2

]

we write the transfer matrix as

[ 1
s+1

1
s+1 −

1
s+3

3
s+2 −

3
s+4

1
s+2

]

=

[

1
0

]

[

1 1
]

s+ 1 +

[

0
1

]

[

3 1
]

s+ 2 −

[

1
0

]

[

0 1
]

s+ 3 −

[

0
1

]

[

3 0
]

s+ 4

This gives the realization
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ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)









=









−1 0 0 0
0 −2 0 0
0 0 −3 0
0 0 0 −4

















x1(t)
x2(t)
x3(t)
x4(t)









+









1 1
3 1
0 −1
−3 0









[

u1(t)
u2(t)

]

[

y1(t)
y2(t)

]

=

[

1 0 1 0
0 1 0 1

]

x(t)

The Small Gain Theorem

Consider a linear system S with input u and output S(u) having a
(Hurwitz) stable transfer function G(s). Then, the system gain

qSq := sup
u

qS(u)q
quq is equal to qGq∞ := sup

ω
pG(iω)p

r1

r2

e1

e2

S1

S2

Assume that S1 and S2 are input-output stable. If qS1q · qS2q < 1, then
the gain from (r1, r2) to (e1, e2) in the closed-loop system is finite.

Application to robustness analysis

❞ ❞G(s)

−C(s)

∆

✻
✲ ❄

✛

✲

✲

✲ ✲

v w

The transfer function from w to v is

−
G(s)C(s)

1+ G(s)C(s)

Hence the small gain theorem guarantees closed-loop stability for all
perturbations ∆ with

q∆q <
(

sup
ω

∣∣∣∣
G(iω)C(iω)

1+ G(iω)C(iω)

∣∣∣∣
)−1

Spectral density

G(s)u y

Assume that the stationary mean-zero stochastic process u has spectral
density Φu(ω). Then

Φy(ω) = G(iω)Φu(ω)G(iω)∗

◮ “Any spectrum” can be generated by filtering white noise
◮ Finding G(s) given Φy(ω) is called spectral factorization

State-space system with white noise input

Given the system

ẋ = Ax+ Bv, Φv(ω) = R

the stationary covariance of the state x is given by

E xxT = Πx =
1

2π

∫∞

−∞
Φx(ω)dω

The symmetric matrix Πx can be found by solving the Lyapunov equation

AΠx + Πx AT + BRBT = 0
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Course Summary

○ Specifications, models and loop-shaping

• Limitations on achievable performance

○ Controller optimization: Analytic approach

○ Controller optimization: Numerical approach

Example: Two water tanks

Example from Lecture 6:

u1u1

u2 u2x1

x1
x2

ax2 a > 1

ẋ1 = −x1 + u1 ẋ2 = −ax2 + u1

y1 = x1 + u2 y2 = ax2 + u2

Can you reach y1 = 1, y2 = 2? Can you stay there?

Example: Two water tanks

u1u1

u2 u2x1

x1
x2

ax2 a > 1

ẋ1 = −x1 + u1 ẋ2 = −ax2 + u1

The controllability Gramian S =
∫∞

0

[

e−t

e−at

] [

e−t

e−at

]T
dt =

[ 1
2

1
a+1

1
a+1

1
2a

]

is close to singular for a ( 1, so it is harder to reach a desired state.

Computing the controllability Gramian

The controllability Gramian S =
∫∞

0 eAt BBT eAT tdt can be computed
by solving the linear system of equations

AS + S AT + BBT = 0

S = ST > 0, i.e., S is a symmetric positive definite matrix

Example: For a 2-state system, assign

S =
[

s11 s12
s12 s22

]

Example: Two water tanks

eplacements
u1u1

u2 u2x1

x1
x2

ax2 a > 1

ẋ1 = −x1 + u1 ẋ2 = −ax2 + u1

G(s) =
[ 1

s+1 1
2

s+2 1

]

. Find zero from det G(s) = −s
(s+ 1)(s+ 2)

There is a zero at s = 0! Outputs must be equal at stationarity.

Sensitivity bounds from RHP zeros and poles

Rules of thumb:

“The closed-loop bandwidth must be less than unstable zero location z.”
“The closed-loop bandwidth must be greater than unstable pole location p.”

Hard bounds:

The sensitivity must be one at an unstable zero:

P(z) = 0 [ S(z) := 1
1+ P(z)C(z) = 1

The complimentary sensitivity must be one at an unstable pole:

P(p) = ∞ [ T(p) := P(p)C(p)
1+ P(p)C(p) = 1

Maximum Modulus Theorem

Assume that G(s) is rational, proper and stable. Then

max
Re s≥0

pG(s)p = max
ω∈R

pG(iω)p

Corollary:

Suppose that the plant P(s) has unstable zeros zi and unstable poles p j.
Then the specifications

sup
ω
pWS(iω)S(iω)p < 1 sup

ω
pWT(iω)T(iω)p < 1

are impossible to meet with a stabilizing controller unless pWS(zi)p < 1
for every unstable zero zi and pWT(p j)p < 1 for every unstable pole p j.

Relative Gain Array (RGA)

For a square matrix A ∈ Cn$n, define

RGA(A) := A .∗ (A−1)T

where “.∗” denotes element-by-element multiplication.
(For a non-square matrix, use pseudo inverse A†)

◮ The sum of all elements in a column or row is one.
◮ Permutations of rows or columns in A give the same permutations in

RGA(A)
◮ RGA(A) is independent of scaling
◮ If A is triangular, then RGA(A) is the unit matrix I.
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Example: RGA for a distillation column

For pairing of inputs and outputs,

◮ select pairings that have relative gains close to 1.
◮ avoid pairings that have negative relative gain.

RGA(P(0)) =
[

0.2827 −0.6111 1.3285
0.0134 1.5827 −0.5962

]

To choose control signal for y1, we apply the heuristics to the top row and
choose u3. Based on the bottom row, we choose u2 to control y2.
Decentralized control!

Decoupling

yẽ uũer
Σ W2 C W1 P

−1

Select decoupling filters W1 (input decoupling) and/or W2 (output
decoupling) so that the controller sees a diagonal plant:

P̃ = W2 PW1 =





∗ 0 0
0 ∗ 0
0 0 ∗





Then we can use a decentralized controller C with the same diagonal
structure.

Course Summary

○ Specifications, models and loop-shaping

○ Limitations on achievable performance

• Controller optimization: Analytic approach

○ Controller optimization: Numerical approach

A general optimization setup

Plant

Controller

✛ ✛

✛

✲
control inputs u

controlled variables z

measurements y

distubances w

The objective is to find a controller that optimizes the transfer matrix
Gzw(s) from disturbances w to controlled outputs z.

Lecture 9-11: Problems with analytic solutions
Lectures 12-14: Problems with numeric solutions

Output feedback using state estimates

Plant
✛

Estimator✲

✛

−L
✛

✲

✛

v

u x̂y

z

Plant:

{

ẋ(t) = Ax(t) + Bu(t) + v1(t)
y(t) = Cx(t) + v2(t)

Controller:

{

d
dt x̂(t) = Ax̂(t) + Bu(t) + K[y(t) − Cx̂(t)]
u(t) = −Lx̂(t)

Linear Quadratic Gaussian (LQG) control

Given the linear plant

{

ẋ(t) = Ax(t) + Bu(t) + v1(k)
y(t) = Cx(t) + v2(t)

Q =
[

Q1 Q12
QT

12 Q2

]

> 0

R =
[

R1 R12
RT

12 R2

]

> 0

consider controllers of the form u = −Lx̂ with
d
dt x̂ = Ax̂+ Bu+ K[y− Cx̂]. The cost function

E
{

xT Q1 x+ 2xT Q12u+ uT Q2u
}

is minimized when K and L satisfy

0 = Q1 + AT S + S A− (SB+ Q12)Q−1
2 (SB+ Q12)

T L = Q−1
2 (SB+ Q12)

T

0 = R1 + AP + PAT − (PCT + R12)R−1
2 (PCT + R12)

T K = (PCT + R12)R−1
2

Tuning the weights

◮ A small Q2 compared to Q1 means that control is “cheap”
◮ Resulting LQ controller will have large feedback gain
◮ The plant state will be quickly regulated to zero
◮ A large cost on an individual state xi means that more effort will be

spent on regulating that particular state to zero

◮ A small R2 compared to R1 means that measurements can be
trusted

◮ Resulting Kalman filter will have large filter gain
◮ The initial estimation error will quickly converge to zero
◮ A large noise covariance on an individual state xi means that the

estimation error will decay faster for that particular state

Course Summary

○ Specifications, models and loop-shaping

○ Limitations on achievable performance

○ Controller optimization: Analytic approach

• Controller optimization: Numerical approach
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The Q-parameterization (Youla)

Plant

Controller

✛ ✛
✛

✲
control inputs u

controlled variables z

measurements y

distubances w

Idea for lecture 12-14:
The choice of controller generally corresponds to finding Q(s), to get
desirable properties of the map from w to z:

z w
Pzw(s) − Pzu(s)Q(s)Pyw(s)

Once Q(s) is determined, a corresponding controller is derived.

The Youla Parameterization

[

Pzw Pzu
Pyw Pyu

]

−C(s)

✛ ✛

✛

✲
u

z

y

w

The closed-loop transfer matrix from w to z is

Gzw(s) = Pzw(s) − Pzu(s)Q(s)Pyw(s)
where

Q(s) = C(s)
[

I + Pyu(s)C(s)
]−1

C(s) = Q(s) + Q(s)Pyu(s)C(s)

C(s) =
[

I − Q(s)Pyu(s)
]−1Q(s)

Synthesis by convex optimization

A general control synthesis problem can be stated as a convex
optimization problem in the variables Q0, . . . , Qm. The problem has a
quadratic objective, with linear and quadratic constraints:

Minimize
∫∞
−∞ pPzw(iω) + Pzu(iω)

Q(iω)
︷ ︸︸ ︷∑

k
Qkφ k(iω) Pyw(iω)p2dω

}

quadratic objective

subject to step response wi → z j is smaller than fi jk at time tk
step response wi → z j is bigger than �i jk at time tk

}

linear constraints

Bode magnitude wi → z j is smaller than hi jk at ω k
}

quadratic constraints

Once the variables Q0, . . . , Qm have been optimized, the controller is
obtained as C(s) =

[

I − Q(s)Pyu(s)
]−1Q(s)

Model reduction by balanced truncation

Consider a balanced realization
[ ˙̂x1

˙̂x2

]

=

[

A11 A12
A21 A22

] [

x̂1
x̂2

]

+

[

B1
B2

]

u Σ =
[

Σ1 0
0 Σ2

]

y =
[

C1 C2
]

[

x̂1
x̂2

]

+ Du

with the lower part of the Gramian being Σ2 = diag(σr+1, . . . , σn).

Replacing the second state equation by ˙̂x2 = 0 gives the relation
0 = A21 x̂1 + A22 x̂2 + B2u. The reduced system

{

˙̂x1 = (A11 − A12 A−1
22 A21)x̂1 + (B1 − A12 A−1

22 B2)u
yred = (C1 − C2 A−1

22 A21)x̂1 + (D − C2 A−1
22 B2)u

satisfies the error bound

qy− yredq2
quq2

≤ 2σr+1 + · · ·+ 2σn
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