FRTN10 Multivariable Control, Lecture 14

Automatic Control LTH, 2017

Course Outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance
L9-L11 Controller optimization: Analytic approach
L12-L14 Controller optimization: Numerical approach
12. Youla parameterization, internal model control

13. Synthesis by convex optimization
14. Controller simplification

Lecture 14 — Outline

1. Model reduction by balanced truncation

2. Application to controller simplification

[Glad/Ljung, section 3.6]

Model reduction

» Mathematical modeling can lead to dynamical models of very high
order

> Controller synthesis using the Q-parameteritzation can lead to very
high order controllers

Need for systematic way to reduce the model order

In general terms we would like to achieve
Gred(s) ~ G(s)

where Gred(s) has (much) lower order than G(s)

Example — DC-motor
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Example — DC-motor

Recall that
-1 ] N
C(s) = [I — Q(s)Pyu(s)] " Q(s). with Q(s) = 3=3 Qudr(s)-
Controller order grows with the number of basis functions ¢ .
Optimized controller for DC-servo has order 14. Is that really needed?

Bode Diagram
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Controllability and Observability Gramians

System: x = Ax + Bu

y=Cx+ Du

Impulse response from zero intial condition: u;(¢) = §(¢), x(0) =0
x(t) = e**B

o0 (o) T
S = f x(2)xT(¢) dt = f eA*BBTeA t dt
0 0
Output when u = 0 (only initial state x(0) = xo)
y(2) = Cx(t) = Cexg

f y(t)Ty(t)dt=f xgeATtCTCAtxodt = xl0x
0 0

Controllability and Observability Gramians

The controllability Gramian S = f;° eAtBBT ATt dt can be found by
solving the Lyapunov equation

AS+SAT+BBT =0
The observability Gramian O = [ eATtCT CeAtdt can be found by
solving the Lyapunov equation

ATo+0A+CTC=0

We want to remove states that are both poorly controllable and poorly
observable.

Idea: Introduce state transformation x = T'x that reveals these states




Balanced realizations

For a stable system (A, B, C) with Gramians S, and O, the variable
transformation x = T'x gives the new state-space matrices A = TAT™ !,
B =TB,C = CT! and the new Gramians

o0 ~ -, o0
Sz = f eABBT At = f TeA'BBT A" TTdt = TS, TT
0 0

0z = f ATET et = f T-TeACTCeA ' 714t = T-T0, T}
0 0

o1 0
A particular choice of T gives Sz = 0Oz = X = .
0 o,

The corresponding realization (A, B, C) is called a balanced realization.

Computing the balancing state transformation

(Not done by hand)

Compute the Cholesky decompositions
S, =ww?, 0,=2zz"
and the singular value decomposition
wrz =Uuxzv?
The balancing transformation is then given by

T=x"3vTz?, 771=wUL:

Matlab: [sysb,sigmas,T] = balreal(sys)

Hankel singular values

Notice that
o 0
= (18,17 (17 T0,T7%) = TS0, T
2 N e ——
0 [ by 3

so the diagonal elements are the eigenvalues of S, O, independently of
coordinate system.

The numbers o7, . . ., 0y, are called the Hankel singular values of the
system.

A small Hankel singular value corresponds to a state that is both weakly
controllable and weakly observable. Hence, it can be truncated without
much effect on the input-output behavior.

Model reduction by balanced truncation

Consider a balanced realization
X1 A Apl[n By ¥ 0
BN = ~ |+ u Y=
[xz] [A21 Azz] [x2] [Bz 0 X
x
y=[Ci Cy [é] + Du
with the lower part of the Gramian being X9 = diag(0y+1, - .., 0n)-
Replacing the second state equation by 5?2 = 0 gives the relation
0 = Ag1x1 + Agaxs + Bou. The reduced system
;C\l = (AH — A12A2_21A21)3/C\1 + (31 —_ A12A2_2132)u
Yred = (C1 — C2A53 Ag1)%1 + (D — C2A5) Ba)u
satisfies the error bound

”y_yred”Z

el <2041+ + 20,

Example

1-—s
56 4855 4+ 554 4+ 783 + 552 435+ 1

Original system: G(s) =

Hankel singular values:
{o:} = [1.9837 1.9184 0.7512 0.3292 0.1478 0.0045]
Keeping r = 3 states gives the reduced system

0.3717s% — 0.9682s2 + 1.14s — 0.5185
s3 4+ 1.136s% + 0.825s + 0.5185

Gred (s ) =

The error bound is
”y - yredHZ

Al < 0,963
llellz

Matlab: Gred = balred(G,3)

Example
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Lecture 14 — Outline

2. Application to controller simplification

Example — DC-servo

Computing the 14 Hankel singular values gives

[13.11 0.97 0.24 0.14 0.05 0.02 0.01 ]
Hankel Singular Values (State Contributions)
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Matlab: hsvd




Example — DC-servo

Handling unstable systems

Reduced controller with 5 states:
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Before model reduction, decompose the system into its stable and
nonstable parts:
G(s) = Gs(8) + Grs(s)

Perform the reduction only on Gs(s); then add G5 (s) again

(Performed automatically by Matlab’s balreal and balred)

Example — Doyle-Stein (1979)

In Lecture 13 we found the following 12th order controller for Doyle—Stein’s

example using optimization:

Example — Doyle-Stein (1979)

The controller has one unstable pole in 16.1. Hankel singular values:

Hankel Singular Values (State Contributions)

) Bode Diagram 14

10
. 12 Unstable modes
8 I Stable modes
3 10
LRt
s 10' N
=S g
g g°

10° :% 6

45 »
_ 4
g 90
P 2
& 35+
& 0 —

150 0 2 4 6 8 10 12

107 10° 10’ 102 103 State
Frequency (rad/s)
Summary

Example — Doyle-Stein (1979)

Reduced controller with 5 states:
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> Low-order controllers could be desirable to meet constraints on
speed and memory

» Balanced realizations can reveal less important states

» Model reduction by balanced trunction has good theoretical error
bounds

» Many possible extensions, e.g.

» frequency weighting
» reduction of unstable systems




