
FRTN10 Multivariable Control, Lecture 14

Automatic Control LTH, 2017

Course Outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach
L12-L14 Controller optimization: Numerical approach

12. Youla parameterization, internal model control
13. Synthesis by convex optimization
14. Controller simplification

Lecture 14 – Outline

1. Model reduction by balanced truncation

2. Application to controller simplification

[Glad/Ljung, section 3.6]

Model reduction

◮ Mathematical modeling can lead to dynamical models of very high
order

◮ Controller synthesis using the Q-parameteritzation can lead to very
high order controllers

Need for systematic way to reduce the model order

In general terms we would like to achieve

Gred(s) ( G(s)

where Gred(s) has (much) lower order than G(s)

Example – DC-motor
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In Lecture 13 we minimized
∫∞
−∞ pGzw(iω)p2dω subject to step response

bounds on Gz1w1 and Gz2w2 :
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Example – DC-motor

Recall that

C(s) =
[

I − Q(s)Pyu(s)
]−1Q(s), with Q(s) =

∑N
k=0 Qkφ k(s).

Controller order grows with the number of basis functions φ k.

Optimized controller for DC-servo has order 14. Is that really needed?
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Controllability and Observability Gramians

System: ẋ = Ax+ Bu
y = Cx+ Du

Impulse response from zero intial condition: ui(t) = δ (t), x(0) = 0

x(t) = eAt B

S =
∫∞

0
x(t)xT(t) dt =

∫∞

0
eAt BBT eAT t dt

Output when u = 0 (only initial state x(0) = x0)

y(t) = Cx(t) = CeAt x0
∫∞

0
y(t)T y(t)dt =

∫∞

0
xT

0 eAT tCTC Atx0dt = xT
0 Ox0

Controllability and Observability Gramians

The controllability Gramian S =
∫∞

0 eAt BBT eAT tdt can be found by
solving the Lyapunov equation

AS + S AT + BBT = 0

The observability Gramian O =
∫∞

0 eAT tCTCeAtdt can be found by
solving the Lyapunov equation

ATO+ OA+ CTC = 0

We want to remove states that are both poorly controllable and poorly
observable.

Idea: Introduce state transformation x̂ = T x that reveals these states
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Balanced realizations

For a stable system (A, B, C) with Gramians Sx and Ox, the variable
transformation x̂ = T x gives the new state-space matrices Â = T AT−1,
B̂ = T B, Ĉ = CT−1 and the new Gramians

S x̂ =

∫∞

0
e Ât B̂B̂T e ÂT tdt =

∫∞

0
TeAt BBT eAT tTT dt = T SxTT

O x̂ =

∫∞

0
e ÂT tĈT Ĉe Âtdt =

∫∞

0
T−T eAtCTCeAT tT−1dt = T−TOxT−1

A particular choice of T gives S x̂ = O x̂ = Σ =







σ1 0
. . .

0 σn







The corresponding realization ( Â, B̂, Ĉ) is called a balanced realization.

Computing the balancing state transformation

(Not done by hand)

Compute the Cholesky decompositions

Sx = WWT , Ox = Z ZT

and the singular value decomposition

WT Z = UΣV T

The balancing transformation is then given by

T = Σ−
1
2 V T ZT , T−1 = WUΣ−

1
2

Matlab: [sysb,sigmas,T] = balreal(sys)

Hankel singular values

Notice that






σ 2
1 0

. . .
0 σ 2

n






= (T SxTT)︸ ︷︷ ︸

Σ

(T−TOxT−1)︸ ︷︷ ︸
Σ

= T SxOxT−1

so the diagonal elements are the eigenvalues of SxOx, independently of
coordinate system.

The numbers σ1, . . . , σn are called the Hankel singular values of the
system.

A small Hankel singular value corresponds to a state that is both weakly
controllable and weakly observable. Hence, it can be truncated without
much effect on the input-output behavior.

Model reduction by balanced truncation

Consider a balanced realization
[ ˙̂x1

˙̂x2

]

=

[

A11 A12
A21 A22

] [

x̂1
x̂2

]

+

[

B1
B2

]

u Σ =
[

Σ1 0
0 Σ2

]

y =
[

C1 C2
]

[

x̂1
x̂2

]

+ Du

with the lower part of the Gramian being Σ2 = diag(σr+1, . . . , σn).

Replacing the second state equation by ˙̂x2 = 0 gives the relation
0 = A21 x̂1 + A22 x̂2 + B2u. The reduced system

{

˙̂x1 = (A11 − A12 A−1
22 A21)x̂1 + (B1 − A12 A−1

22 B2)u
yred = (C1 − C2 A−1

22 A21)x̂1 + (D − C2 A−1
22 B2)u

satisfies the error bound

qy− yredq2
quq2

≤ 2σr+1 + · · ·+ 2σn

Example

Original system: G(s) = 1− s
s6 + 3s5 + 5s4 + 7s3 + 5s2 + 3s+ 1

Hankel singular values:

{σi} =
[

1.9837 1.9184 0.7512 0.3292 0.1478 0.0045
]

Keeping r = 3 states gives the reduced system

Gred(s) =
0.3717s3 − 0.9682s2 + 1.14s− 0.5185

s3 + 1.136s2 + 0.825s+ 0.5185

The error bound is
qy− yredq2
quq2

≤ 0.963

Matlab: Gred = balred(G,3)

Example
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Lecture 14 – Outline

1. Model reduction by balanced truncation

2. Application to controller simplification

Example – DC-servo

Computing the 14 Hankel singular values gives
[

13.11 0.97 0.24 0.14 0.05 0.02 0.01 . . .
]
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Matlab: hsvd
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Example – DC-servo

Reduced controller with 5 states:

10
-4

10
-2

10
0

10
2

M
a

g
n

it
u

d
e

 (
a

b
s
) Order = 14

Order = 5

10
-4

10
-2

10
0

10
2

10
4

-180

0

180

360

540

P
h

a
s
e

 (
d

e
g

)

Bode Diagram

Frequency  (rad/s)

Matlab: balred

Handling unstable systems

Before model reduction, decompose the system into its stable and
nonstable parts:

G(s) = Gs(s) + Gns(s)

Perform the reduction only on Gs(s); then add Gns(s) again

(Performed automatically by Matlab’s balreal and balred)

Example – Doyle–Stein (1979)

In Lecture 13 we found the following 12th order controller for Doyle–Stein’s
example using optimization:
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Example – Doyle–Stein (1979)

The controller has one unstable pole in 16.1. Hankel singular values:
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Example – Doyle–Stein (1979)

Reduced controller with 5 states:
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Summary

◮ Low-order controllers could be desirable to meet constraints on
speed and memory

◮ Balanced realizations can reveal less important states
◮ Model reduction by balanced trunction has good theoretical error

bounds
◮ Many possible extensions, e.g.

◮ frequency weighting
◮ reduction of unstable systems
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