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Course Outline

L1-L5 Specifications, models and loop-shaping by hand

L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach

L12-L14 Controller optimization: Numerical approach

12 Youla parameterization, internal model control

13 Synthesis by convex optimization

14 Controller simplification

Automatic Control LTH, 2017 FRTN10 Multivariable Control, Lecture 14



Lecture 14 – Outline

1 Model reduction by balanced truncation

2 Application to controller simplification

[Glad/Ljung, section 3.6]
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Model reduction

Mathematical modeling can lead to dynamical models of very high

order

Controller synthesis using the Q-parameteritzation can lead to very

high order controllers

Need for systematic way to reduce the model order

In general terms we would like to achieve

Gred(s) ( G(s)

where Gred(s) has (much) lower order than G(s)
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Example – DC-motor

+

+

+

+

20
s(s+1)C(s)

−1

z2w1

w2

z1

In Lecture 13 we minimized
∫∞
−∞ pGzw(iω)p

2dω subject to step response

bounds on Gz1w1
and Gz2w2
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Example – DC-motor

Recall that

C(s) =
[

I − Q(s)Pyu(s)
]−1

Q(s), with Q(s) =
∑N

k=0 Qkφ k(s).

Controller order grows with the number of basis functions φ k.

Optimized controller for DC-servo has order 14. Is that really needed?
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Controllability and Observability Gramians

System:
ẋ = Ax+ Bu

y = Cx+ Du

Impulse response from zero intial condition: ui(t) = δ (t), x(0) = 0

x(t) = eAt B

S =

∫∞

0

x(t)xT(t) dt =

∫∞

0

eAt BBT eAT t dt

Output when u = 0 (only initial state x(0) = x0)

y(t) = Cx(t) = CeAt x0

∫∞

0

y(t)T y(t)dt =

∫∞

0

xT
0 eAT tCTC Atx0dt = xT

0 Ox0
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Controllability and Observability Gramians

The controllability Gramian S =
∫∞

0
eAt BBT eAT tdt can be found by

solving the Lyapunov equation

AS + S AT + BBT = 0

The observability Gramian O =
∫∞

0
eAT tCTCeAtdt can be found by

solving the Lyapunov equation

ATO+ OA+ CTC = 0

We want to remove states that are both poorly controllable and poorly

observable.

Idea: Introduce state transformation x̂ = T x that reveals these states
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Balanced realizations

For a stable system (A, B, C) with Gramians Sx and Ox, the variable

transformation x̂ = T x gives the new state-space matrices Â = T AT−1,

B̂ = T B, Ĉ = CT−1 and the new Gramians

S x̂ =

∫∞

0

e Ât B̂B̂T e ÂT tdt =

∫∞

0

TeAt BBT eAT tTT dt = T SxTT

O x̂ =

∫∞

0

e ÂT tĈT Ĉe Âtdt =

∫∞

0

T−T eAtCTCeAT tT−1dt = T−TOxT−1

A particular choice of T gives S x̂ = O x̂ = Σ =







σ1 0
. . .

0 σn







The corresponding realization ( Â, B̂, Ĉ) is called a balanced realization.
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Computing the balancing state transformation

(Not done by hand)

Compute the Cholesky decompositions

Sx = WWT , Ox = Z ZT

and the singular value decomposition

WT Z = UΣV T

The balancing transformation is then given by

T = Σ−
1
2 V T ZT , T−1 = WUΣ−

1
2

Matlab: [sysb,sigmas,T] = balreal(sys)
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Hankel singular values

Notice that







σ 2
1 0

. . .

0 σ 2
n






= (T SxTT)︸ ︷︷ ︸

Σ

(T−TOxT−1)︸ ︷︷ ︸
Σ

= T SxOxT−1

so the diagonal elements are the eigenvalues of SxOx, independently of

coordinate system.

The numbers σ1, . . . , σn are called the Hankel singular values of the

system.

A small Hankel singular value corresponds to a state that is both weakly

controllable and weakly observable. Hence, it can be truncated without

much effect on the input-output behavior.
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Model reduction by balanced truncation

Consider a balanced realization
[

˙̂x1

˙̂x2

]

=

[

A11 A12

A21 A22

] [

x̂1

x̂2

]

+

[

B1

B2

]

u Σ =

[

Σ1 0

0 Σ2

]

y =
[

C1 C2

]

[

x̂1

x̂2

]

+ Du

with the lower part of the Gramian being Σ2 = diag(σr+1, . . . , σn).

Replacing the second state equation by ˙̂x2 = 0 gives the relation

0 = A21 x̂1 + A22 x̂2 + B2u. The reduced system

{

˙̂x1 = (A11 − A12 A−1
22 A21)x̂1 + (B1 − A12 A−1

22 B2)u

yred = (C1 − C2 A−1
22 A21)x̂1 + (D − C2 A−1

22 B2)u

satisfies the error bound

qy− yredq2

quq2

≤ 2σr+1 + · · ·+ 2σn

Automatic Control LTH, 2017 FRTN10 Multivariable Control, Lecture 14



Example

Original system: G(s) =
1− s

s6 + 3s5 + 5s4 + 7s3 + 5s2 + 3s+ 1

Hankel singular values:

{σi} =
[

1.9837 1.9184 0.7512 0.3292 0.1478 0.0045
]

Keeping r = 3 states gives the reduced system

Gred(s) =
0.3717s3 − 0.9682s2 + 1.14s− 0.5185

s3 + 1.136s2 + 0.825s+ 0.5185

The error bound is
qy− yredq2

quq2

≤ 0.963

Matlab: Gred = balred(G,3)
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Example
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Lecture 14 – Outline

1 Model reduction by balanced truncation

2 Application to controller simplification
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Example – DC-servo

Computing the 14 Hankel singular values gives

[

13.11 0.97 0.24 0.14 0.05 0.02 0.01 . . .
]

0 5 10 15

State

0

2

4

6

8

10

12

14
S

ta
te

 E
n
e
rg

y
Hankel Singular Values (State Contributions)

Stable modes

Matlab: hsvd
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Example – DC-servo

Reduced controller with 5 states:
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Handling unstable systems

Before model reduction, decompose the system into its stable and

nonstable parts:

G(s) = Gs(s) + Gns(s)

Perform the reduction only on Gs(s); then add Gns(s) again

(Performed automatically by Matlab’s balreal and balred)
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Example – Doyle–Stein (1979)

In Lecture 13 we found the following 12th order controller for Doyle–Stein’s

example using optimization:
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Example – Doyle–Stein (1979)

The controller has one unstable pole in 16.1. Hankel singular values:
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Example – Doyle–Stein (1979)

Reduced controller with 5 states:

10
-2

10
0

10
2

M
a
g
n
it
u
d
e
 (

a
b
s
) Order = 12

Order = 5

10
0

10
2

10
4

10
6

-180

-135

-90

-45

0

P
h
a
s
e
 (

d
e
g
)

Bode Diagram

Frequency  (rad/s)

Automatic Control LTH, 2017 FRTN10 Multivariable Control, Lecture 14



Summary

Low-order controllers could be desirable to meet constraints on

speed and memory

Balanced realizations can reveal less important states

Model reduction by balanced trunction has good theoretical error

bounds

Many possible extensions, e.g.

frequency weighting

reduction of unstable systems
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