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Course Outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance
L9-L11 Controller optimization: Analytic approach
L12-L14 Controller optimization: Numerical approach

@ Youla parameterization, internal model control
@ Synthesis by convex optimization
@ Controller simplification
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Lecture 14 — Outline

@ Model reduction by balanced truncation

@ Application to controller simplification

[Glad/Ljung, section 3.6]
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Model reduction

@ Mathematical modeling can lead to dynamical models of very high
order

@ Controller synthesis using the Q-parameteritzation can lead to very
high order controllers

Need for systematic way to reduce the model order

In general terms we would like to achieve
Gred(s) =~ G(s)

where Gred(s) has (much) lower order than G(s)
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Example — DC-motor

I 20 2

C(S) = s(s+1)
W2
—1 <—<]>

In Lecture 13 we minimized [ |G, (iw)|?dw subject to step response

bounds on G, and G,u,:
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Example — DC-motor

Recall that
-1 Y
C(s) = [I = Q) Pyuls)]” Q(s). with Q(s) = Y310 @i ().
Controller order grows with the number of basis functions ¢.

Optimized controller for DC-servo has order 14. |s that really needed?
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Controllability and Observability Gramians

ShEams x = Ax + Bu

y=Cx+ Du
Impulse response from zero intial condition: u;(¢) = (), x(0) =0

x(t) = eA'B

S = f x(t)xT () dt = f eA'BBT A" dt
0 0

Output when u = 0 (only initial state x(0) = xo)

y(t) = Cx(t) = Celx

f y(t)Ty(t)dtzf xgeATtCTCAtxodt = x0x
0 0
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Controllability and Observability Gramians

The controllability Gramian S = f;° eAtBBT A"t dt can be found by
solving the Lyapunov equation

AS +SAT + BBT =0

o0

The observability Gramian O = [
solving the Lyapunov equation

eA"tCT CeAtdt can be found by

ATO+0A+CTCc =0

We want to remove states that are both poorly controllable and poorly
observable.

Idea: Introduce state transformation x = T'x that reveals these states
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Balanced realizations

For a stable system (A, B, C) with Gramians S, and O,, the variable
transformation ¥ = T'x gives the new state-space matrices A = TAT !,
B = TB, C = CT ! and the new Gramians
o ~ ~r o0 T
Sz = f eA'BBT e 'dt = f TeA'BBTe" 'TTdt = TS, TT
0 0

(ee] - A PN (ee]
0; = f eA"tCT CeAldt = f T TeACTCeA ' T dt = T-T0, T}
0 0
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Balanced realizations

For a stable system (A, B, C) with Gramians S, and O,, the variable
transformation ¥ = T'x gives the new state-space matrices A = TAT !,
B = TB, C = CT ! and the new Gramians

Sz = f eAtBBT Aty — f TeA'BBT A" TT gt = TS, TT
0 0

0: = f ATt T Celt gy = f T-TeACTCeA T gt = T-T0, T
0 0

o1 0
A particular choice of T' gives Sz = Oz = X =
0 oy,

The corresponding realization (A, B, C) is called a balanced realization.
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Computing the balancing state transformation

(Not done by hand)

Compute the Cholesky decompositions
S,=Ww’, 0,=2zz"
and the singular value decomposition
W'z =Uxzv”
The balancing transformation is then given by

T=x":vTzT, T-1=wUuz:

Matlab: [sysb,sigmas,T] = balreal(sys)
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Hankel singular values

Notice that
ol 0
= (TS, T7) (17 '0,77) = T8,0, T !
N—— N ——
0 a2 by x

so the diagonal elements are the eigenvalues of S, O,, independently of
coordinate system.

The numbers o7, . .., 03, are called the Hankel singular values of the
system.

A small Hankel singular value corresponds to a state that is both weakly
controllable and weakly observable. Hence, it can be truncated without
much effect on the input-output behavior.
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Model reduction by balanced truncation

Consider a balanced realization
X1 A Al x B, X1 O
5 s | 1 o R Y
X
y = [Cl CQ] [&\;:I + Du

with the lower part of the Gramian being X9 = diag(oy+1, ..., 0%).

Replacing the second state equation by 9?2 = ( gives the relation
0 = As1x1 + AgsXs + Bou. The reduced system

X1 = (A11 — A1gA5) Ag1)%1 + (B1 — A19A53 Bo)u
¥red = (C1 — C2Ag Ag1)%1 + (D — CoA55 Bo)u
satisfies the error bound

ly — ¥reall2
el
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1-—s
64355 + 554 + 753+ 552 +3s+1

Original system: G(s)

Hankel singular values:
{oi} =[1.9837 1.9184 0.7512 0.3292 0.1478 0.0045]
Keeping r = 3 states gives the reduced system

0.3717s® — 0.9682s2 + 1.14s — 0.5185
s3 + 1.136s2 + 0.825s + 0.5185

Gred (3) =

The error bound is
”y < yred”Z

< 0.963
elle

Matlab: Gred = balred(G, 3)



Step Response
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0 10 15 20 25 30 35 40 45 50
Time (seconds)
Bode Diagram
10’
& 10° ]
Q -
s ¢ NT-=---4
3
3 10 E J
'S
(=}
s
102 F 3
10—3 L 1
102 10° 10° 10




Lecture 14 — Outline

Q Application to controller simplification
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Example — DC-servo

Computing the 14 Hankel singular values gives

[13.11 0.97 0.24 0.14 0.05 0.02 0.01 ...

Hankel Singular Values (State Contributions)

l I Stable modes ‘ 1

State Energy

State

Matlab: hsvd
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Example — DC-servo

Reduced controller with 5 states:

Bode Diagram
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Matlab: balred



Handling unstable systems

Before model reduction, decompose the system into its stable and
nonstable parts:

G(s) = Gs(s) + Gns(s)

Perform the reduction only on Gs(s); then add G,5(s) again

(Performed automatically by Matlab’s balreal and balred)
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Example — Doyle-Stein (1979)

In Lecture 13 we found the following 12th order controller for Doyle—Stein’s
example using optimization:

Bode Diagram
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Example — Doyle-Stein (1979)

The controller has one unstable pole in 16.1. Hankel singular values:

Hankel Singular Values (State Contributions)
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Example — Doyle-Stein (1979)

Reduced controller with 5 states:

Bode Diagram
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Summary

@ Low-order controllers could be desirable to meet constraints on
speed and memory

@ Balanced realizations can reveal less important states

@ Model reduction by balanced trunction has good theoretical error
bounds
@ Many possible extensions, e.g.
@ frequency weighting
@ reduction of unstable systems
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