
FRTN10 Multivariable Control, Lecture 13

Automatic Control LTH, 2017

Course Outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach
L12-L14 Controller optimization: Numerical approach

12. Youla parameterization, internal model control
13. Synthesis by convex optimization
14. Controller simplification

Lecture 13 – Outline

1. Examples

2. Introduction to convex optimization

3. Controller optimization using Youla parameterization

4. Examples revisited

Parts of this lecture is based on material from Boyd, Vandenberghe and
coauthors. See also lecture notes and links on course homepage.

General idea for Lectures 12–14

Plant

Controller

✛ ✛
✛

✲
control inputs u

controlled variables z

measurements y

distubances w

The choice of controller corresponds to designing a transfer matrix Q(s),
to get desirable properties of the following map from w to z:

z w
Pzw(s) − Pzu(s)Q(s)Pyw(s)

Once Q(s) has been designed, the corresponding controller can be found.

Lecture 13 – Outline

1. Examples

2. Introduction to convex optimization

3. Controller optimization using Youla parameterization

4. Examples revisited

Example 1 (Doyle–Stein, 1979)

Given the process

ẋ =

−4 −3

1 0


 x+


1

0


 u+


−61

35


 v1

y =

1 2


 x+ v2

where v1 and v2 are independent unit-intensity white noise processes, find
a controller that minimizes

E
{

80 xT

 1

√
35√

35 35


 x+ u2

}

while satisfying the robustness constraint Ms ≤ 2

Example 1 (Doyle–Stein, 1979)

LQG design gives a controller that does not satisfy the constraint on S
(see Lecture 11):

10
-2

10
-1

10
0

10
1

10
2

10
3

0.5

1

1.5

2

2.5

3

3.5
4

4.5

M
a

g
n

it
u

d
e

 (
a

b
s
)

|S|

Frequency (rad/s)

Example 2 – DC-motor

+

+

+

+

P(s)C(s)

−1

z2w1

w2

z1

Assume we want to optimize the closed-loop transfer matrix from (w1, w2)
to (z1, z2),

Gzw(s) =
[P

1+PC
−PC
1+PC

1
1+PC

−C
1+PC

]

when P(s) = 20
s(s+ 1) .

1

Example 2 – DC-motor

Minimizing ∫∞

−∞
pGzw(iω)p2 dω

is equivalent to solving the LQG problem with (see Lecture 11)

A =

0 0

1 −1


 , B = N =


20

0


 , C =


0 1




Q1 = CTC, Q2 = R1 = R2 = 1

Example 2 – DC-motor

Step responses of gang of four:

0 1 2 3 4
-0.5

0

0.5

1

C/(1+PC)

Time (seconds)

A
m

p
lit

u
d
e

0 1 2 3 4
-0.5

0

0.5

1

1/(1+PC)

Time (seconds)

A
m

p
lit

u
d
e

0 1 2 3 4
0

0.5

1

1.5

PC/(1+PC)

Time (seconds)

A
m

p
lit

u
d
e

0 1 2 3 4
0

1

2

3

4

P/(1+PC)

Time (seconds)

A
m

p
lit

u
d
e

Example 2 – DC-motor

Suppose we want to add some time-domain constraints:

0 1 2 3 4
-0.4

-0.2

0

0.2

0.4

0.6

0.8
C/(1+PC)

Time (seconds)

A
m

p
lit

u
d

e

0 1 2 3 4

0

1

2

3

4

5

P/(1+PC)

Time (seconds)

A
m

p
lit

u
d

e

◮ Control signal pup ≤ 0.4 for unit output disturbance (or setpoint change)

◮ Output signal pyp ≤ 0.2 for t ≥ 3 for unit load disturbance

Lecture 13 – Outline

1. Examples

2. Introduction to convex optimization

3. Controller optimization using Youla parameterization

4. Examples revisited

Convex optimization

Convex optimization = minimization of convex function over convex set

◮ Also known as convex programming

◮ Key property: Any local minimum must also be a global minimum

◮ Convex problems can be solved, and efficient solvers are available
◮ By contrast, most nonconvex problems cannot be solved

◮ Many engineering design problems can be formulated as convex
optimization problems

Mathematical formulation

minimize f0(x)
subject to fi(x) ≤ bi, i = 1, . . . ,m

• objective and constraint functions are convex:

fi(αx+ βy) ≤ αfi(x) + βfi(y)

if α+ β = 1, α ≥ 0, β ≥ 0

• includes least-squares problems and linear programs as special cases

Least squares

minimize ‖Ax− b‖22

solving least-squares problems

• analytical solution: x⋆ = (ATA)−1AT b

• reliable and efficient algorithms and software

• computation time proportional to n2k (A ∈ Rk×n); less if structured

• a mature technology

using least-squares

• least-squares problems are easy to recognize

• a few standard techniques increase flexibility (e.g., including weights,
adding regularization terms)

Linear program (LP)

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m

solving linear programs

• no analytical formula for solution

• reliable and efficient algorithms and software

• computation time proportional to n2m if m ≥ n; less with structure

• a mature technology

using linear programming

• not as easy to recognize as least-squares problems

• a few standard tricks used to convert problems into linear programs
(e.g., problems involving ℓ1- or ℓ∞-norms, piecewise-linear functions)

2

Quadratic program (QP)

minimize (1/2)xTPx+ qTx+ r
subject to Gx ¹ h

Ax = b

• P ∈ Sn
+, so objective is convex quadratic

• minimize a convex quadratic function over a polyhedron

P

x⋆

−∇f0(x
⋆)

Convex program

solving convex optimization problems

• no analytical solution

• reliable and efficient algorithms

• computation time (roughly) proportional to max{n3, n2m,F}, where F
is cost of evaluating fi’s and their first and second derivatives

• almost a technology

using convex optimization

• often difficult to recognize

• many tricks for transforming problems into convex form

• surprisingly many problems can be solved via convex optimization

Brief history of convex optimization

theory (convex analysis): ca1900–1970

algorithms

• 1947: simplex algorithm for linear programming (Dantzig)

• 1960s: early interior-point methods (Fiacco & McCormick, Dikin, . . .)

• 1970s: ellipsoid method and other subgradient methods

• 1980s: polynomial-time interior-point methods for linear programming
(Karmarkar 1984)

• late 1980s–now: polynomial-time interior-point methods for nonlinear
convex optimization (Nesterov & Nemirovski 1994)

applications

• before 1990: mostly in operations research; few in engineering

• since 1990: many new applications in engineering (control, signal
processing, communications, circuit design, . . .); new problem classes
(semidefinite and second-order cone programming, robust optimization)

Definition of convex function

f : Rn → R is convex if dom f is a convex set and

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for all x, y ∈ dom f , 0 ≤ θ ≤ 1

(x, f(x))

(y, f(y))

• f is concave if −f is convex

• f is strictly convex if dom f is convex and

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y)

for x, y ∈ dom f , x 6= y, 0 < θ < 1

Examples on R

convex:

• affine: ax+ b on R, for any a, b ∈ R

• exponential: eax, for any a ∈ R

• powers: xα on R++, for α ≥ 1 or α ≤ 0

• powers of absolute value: |x|p on R, for p ≥ 1

• negative entropy: x log x on R++

concave:

• affine: ax+ b on R, for any a, b ∈ R

• powers: xα on R++, for 0 ≤ α ≤ 1

• logarithm: log x on R++

Examples on Rn and Rm$n
Examples on R and R

affine functions are convex and concave; all norms are convex

examples on Rn

• affine function f(x) = aTx+ b

• norms: ‖x‖p = (
∑n

i=1 |xi|p)1/p for p ≥ 1; ‖x‖∞ = maxk |xk|

examples on Rm×n (m× n matrices)

• affine function

f(X) = tr(ATX) + b =

m∑

i=1

n∑

j=1

AijXij + b

• spectral (maximum singular value) norm

f(X) = ‖X‖2 = σmax(X) = (λmax(X
TX))1/2

Solving convex programs

◮ Specialized methods for different subtypes of convex programs

◮ Medium-scale problems (thousands of variables and constraints) can
be solved using standard interior point methods

◮ Relax the constraints using barrier functions
◮ Use Newton’s method in each iteration while gradually sharpening the

barriers

◮ Large-scale problems (millions or billions of variables and
constraints) require special methods and special software

Barrier method for constrained minimization

minimize f0(x)
subject to fi(x) ≤ 0 1 = 1, . . . , m

Ax = b

approximation via logarithmic barrier

minimize f0(x)− (1/t)
∑m

i=1 log(−fi(x))
subject to Ax = b

• an equality constrained problem

• for t > 0, −(1/t) log(−u) is a

smooth approximation of I−

• approximation improves as t → ∞
u

−3 −2 −1 0 1
−5

0

5

10

3

Newton’s method

given a starting point x ∈ dom f , tolerance ǫ > 0.

repeat

1. Compute the Newton step and decrement.

∆xnt := −∇2f(x)−1∇f(x); λ2 := ∇f(x)T∇2f(x)−1∇f(x).

2. Stopping criterion. quit if λ2/2 ≤ ǫ.

3. Line search. Choose step size t by backtracking line search.

4. Update. x := x + t∆xnt.

x(0)

x(1)

k

f
(x

(k
))

−
p

⋆

0 1 2 3 4 510−15

10−10

10−5

100

105

Software for convex optimization

◮ CVX – Matlab software for disciplined convex programming,
developed at Stanford by Stephen Boyd and co-workers

◮ Internally uses solvers like SeDuMi and SDPT3
◮ Easily integrated with Python, Julia
◮ CVXGEN – C code generation

◮ YALMIP – Matlab toolbox for convex and nonconvex optimization
problems

◮ SeDuMi – software for optimization over symmetric cones
◮ SDPT3 – Matlab software for semidefinite programming
◮ Gurobi – Commercial optimization software
◮ . . .

Lecture 13 – Outline

1. Examples

2. Introduction to convex optimization

3. Controller optimization using Youla parameterization

4. Examples revisited

Scheme for numerical optimization of Q

Given some fixed set of basis function φ0(s), . . . , φ N(s), we will search
numerically for matrices Q0, . . . , QN such that the closed-loop transfer
matrix Gzw(s) satisfies given specifications when

Gzw(s) = Pzw(s) − Pzu(s)Q(s)Pyw(s) and Q(s) =
N∑

k=0
Qkφ k(s)

Once Q(s) has been determined, we will recover the desired controller
from the formula

C(s) =
[

I − Q(s)Pyu(s)
]−1Q(s)

It is possible to choose the sequence φ0(s), φ1(s), φ2(s), . . . such that
every stable Q can be approximated arbitrarily well. Hence, in principle,
every convex control design problem can be solved this way.

Choice of basis functions

Many possibilities. Common choices:

◮ Laguerre basis polynomials,

φ k(s) =
1

(s/a+ 1)k

where a should be wisely selected
(rule of thumb: close to bandwidth of closed-loop system)

◮ Pulse response parameterization (discrete time approximation)

0 5 10

0

0.2

0.4

0.6

0.8

1

Qk

Specifications that lead to convex constraints

◮ Stability of the closed-loop system
◮ Upper and lower bounds on step response from wi to z j at time ti
◮ Upper bound on Bode amplitude from wi to z j at frequency ω i
◮ Interval bound on Bode phase from wi to z j at frequency ω i

The following constraints are however nonconvex:

◮ Stability of the controller
◮ Lower bound on Bode amplitude from wi to z j at frequency ω i

Lower bound on step response

0 5 10 15 20 25
0

0.5

1

1.5

2

The step response depends linearly on Qk, so every time tk with a lower
bound gives a linear constraint.

Upper bound on step response

0 5 10 15 20 25
0

0.5

1

1.5

2

Every time tk with an upper bound also gives a linear constraint.

4

Upper bound on Bode amplitude

Bode Magnitude Diagram

Frequency (rad/sec)

M
a
g
n
it
u
d
e
 (

a
b
s
)

10
0

10
1

10
−2

10
−1

10
0

10
1

Ga(iω)

Gb(iω)

An amplitude bound pG(iω i)p < c is a quadratic constraint.

Lower bound on Bode amplitude

Bode Magnitude Diagram

Frequency (rad/sec)

M
a
g
n
it
u
d
e
 (

a
b
s
)

10
0

10
1

10
−2

10
−1

10
0

10
1

Ga(iω)

Gb(iω)

An lower bound pG(iω i)p is a nonconvex quadratic constraint. This
should be avoided in optimization.

Synthesis by convex optimization

Quite general control synthesis problems can be stated as convex optimization
problems in the variable Q(s). The problem could have a quadratic objective, with
linear/quadratic constraints, e.g.:

Minimize
∫∞
−∞ pPzw(iω) + Pzu(iω)

Q(iω)︷ ︸︸ ︷∑

k
Qkφ k(iω) Pyw(iω)p2dω

}

quadratic objective

subj. to
step response wi → z j is smaller than fi jk at time tk
step response wi → z j is bigger than �i jk at time tk

}

linear constraints

Bode magnitude wi → z j is smaller than hi jk at ω k
}

quadratic constraints

Here Q(s) =
∑

k Qkφ k(s), where φ1, . . . , φm are some fixed basis functions,
and Q0, . . . , Qm are optimization variables.

Once Q(s) has been determined, the controller is obtained as
C(s) =

[

I − Q(s)Pyu(s)
]−1Q(s)

Lecture 13 – Outline

1. Examples

2. Introduction to convex optimization

3. Controller optimization using Youla parameterization

4. Examples revisited

Example 1 (Doyle–Stein, 1979)

LQG problem reformulated as extended plant model:

P

C

√
Q1

√
R1

√
Q2

√
R2

w1
w2

w3

z1
z2

z3

uy

Minimize∫∞

−∞
pPzw(iω) + Pzu(iω)

∑

k
qkφ k(iω)Pyw(iω)p2dω

with qk scalar and
φ k(s) =

1
(s/a+ 1)k

Example 1 (Doyle–Stein, 1979)

Green: Optimization-based design with constraint on pSp:

10
-2

10
-1

10
0

10
1

10
2

10
3

0.5

1

1.5

2

2.5

3

3.5
4

4.5

M
a

g
n

it
u

d
e

 (
a

b
s
)

|S|

Frequency (rad/s)

(Controller order: 12)

Example 2 – DC-servo

Introduce stabilizing controller C0 and reformulate for optimization:

ũ

w1

w2

z1

z2

y





P 0 P
1 0 1
P 1 P





−C0

−C1(s)

y ũ





Pc −Pc Pc
1− Pc Pc − 1 1− Pc

Pc 1− Pc Pc





−C1(s)

Gzw(s) =
[

Pc −Pc
1− Pc Pc − 1

]

+
[

Pc
1− Pc

]

Q
[

Pc 1− Pc
]

Example 2 – DC-servo

Green: Optimization with control signal limitation:

0 1 2 3 4
-0.4

-0.2

0

0.2

0.4

0.6

0.8

C/(1+PC)

Time (seconds)

A
m

p
lit

u
d
e

(Controller order: 14)

5

Example 2 – DC-servo

Green: Also adding the limit on y, 3 ≤ t ≤ 4:

0 1 2 3 4

0

1

2

3

4

5

P/(1+PC)

Time (seconds)

A
m

p
lit

u
d
e

(Controller order: 14)

Example 2 – DC-servo

Final controller:

10
-2

10
-1

10
0

10
1

10
2

M
a

g
n

it
u

d
e

 (
a

b
s
)

10
-3

10
-2

10
-1

10
0

10
1

10
2

-135

-90

-45

0

45

P
h

a
s
e

 (
d

e
g

)

Bode Diagram

Frequency (rad/s)

Is it any good? With optimization, you get what you ask for!

Lecture 13 – summary

◮ There are efficient algorithms for solving convex programs
◮ Local optimum\ global optimum

◮ The Youla parameterization allows us to use these algorithms for
control synthesis

◮ Resulting controllers typically have high order. Order reduction will be
studied in the next lecture.

Further reading: Stephen Boyd’s books on convex optimization are
available online:

http://stanford.edu/~boyd/books.html

6

