
FRTN10 Multivariable Control, Lecture 12

Automatic Control LTH, 2017

Course Outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach
L12-L14 Controller optimization: Numerical approach

12. Youla parameterization, internal model control
13. Synthesis by convex optimization
14. Controller simplification

Lecture 12 – Outline

1. The Quola parameterization

2. Internal model control (IMC)

[Glad&Ljung Section 8.4]

Basic idea of Youla and IMC

Assume stable SISO plant P. Model for design:

r y
Σ C(s) P(s)

−1

\
r y

Q(s) P(s)

PC
1+ PC = PQ

Q = C
1+ PC

Design Q to get desired closed-loop properties. Then C = Q
1− QP

General idea for Lectures 12–14

Plant

Controller

✛ ✛
✛

✲
control inputs u

controlled variables z

measurements y

distubances w

The choice of controller corresponds to designing a transfer matrix Q(s),
to get desirable properties of the following map from w to z:

z w
Pzw(s) − Pzu(s)Q(s)Pyw(s)

Once Q(s) has been designed, the corresponding controller can be found.

The Youla (Q) parameterization

General closed-loop control system:

Pzw(s) Pzu(s)
Pyw(s) Pyu(s)

−C(s)

✛ ✛

✛

✲

u
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Z(s) = Pzw(s)W(s) + Pzu(s)U(s)
Y (s) = Pyw(s)W(s) + Pyu(s)U(s)
U(s) = −C(s)Y (s)

The Youla (Q) parameterization

Pzw(s) Pzu(s)
Pyw(s) Pyu(s)

−C(s)

✛ ✛

✛

✲
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z
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w

Closed-loop transfer function from w to z:

Gzw(s) = Pzw(s) − Pzu(s)C(s)
[

I + Pyu(s)C(s)
]−1

︸ ︷︷ ︸
=Q(s)

Pyw(s)

Given Q(s), the controller is C(s) =
[

I − Q(s)Pyu(s)
]−1Q(s)

All stabilizing controllers

Suppose the plant P =
[

Pzw Pzu
Pyw Pyu

]

is stable. Then

◮ Stabilty of Q implies stability of Pzw − PzuQPyw

◮ If Q = C
[

I + PyuC
]−1 is unstable, then the closed loop is unstable.

Hence, if P is stable then all stabilizing controllers are given by

C(s) =
[

I − Q(s)Pyu(s)
]−1Q(s)

where Q(s) is an arbitrary stable transfer function.
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Dealing with unstable plants
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P0(s)
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Pzw Pzũ
Pyw Pyũ

−C1

✛ ✛
✛

✲
ũ
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w

If P0(s) is unstable, let C0(s) be some stabilizing controller. Then the
previous argument can be applied with Pzw, Pzũ, Pyw, and Pyũ
representing the stabilized system.

Example – DC-motor

+

+

+

+

P(s)C(s)

−1

z2w1

w2

z1

Assume we want to optimize the closed-loop transfer matrix from
(w1, w2)

T to (z1, z2)
T ,

Gzw(s) =
[ P

1+PC
−PC
1+PC

1
1+PC

−C
1+PC

]

when P(s) = 20
s(s+1) . How to parameterize all stabilizing controllers C(s)?

Stabilizing controller for DC-motor

Generalized plant model:
w1

w2

z1

z2

y u





P 0 P
1 0 1
P 1 P





−C(s)

P(s) = 20
s(s+1) is not stable, so introduce

C(s) = C0(s) + C1(s)

where C0(s) = 1 stabilizes the plant; Pc(s) = P(s)
1+P(s) =

20
s2+s+20

Redrawn diagram for DC-motor example
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w1

w2

z1

z2

y


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P 0 P
1 0 1
P 1 P





−1

−C1(s)

z1 = Pw1 + P(ũ− y)
z2 = w1 + ũ− y
y = Pw1 + w2 + P(ũ− y) [ y = P

1+P w1 +
1

1+P w2 +
P

1+P ũ

Redrawn diagram for DC-motor example

y ũ





Pc −Pc Pc
1− Pc Pc − 1 1− Pc

Pc 1− Pc Pc





−C1(s)

Pyũ = Pc

Gzw =

[

Pc −Pc
1− Pc Pc − 1

]

︸ ︷︷ ︸
Pzw

−

[

Pc
1− Pc

]

︸ ︷︷ ︸
Pzũ

Q
[

Pc 1− Pc
]

︸ ︷︷ ︸
Pyw

Apply optimization (Lec. 13) to find Q(s). Then C(s) = 1+ Q(s)
1−Q(s)Pyũ(s)

Lecture 12 – Outline

1. The Quola parameterization

2. Internal model control (IMC)

Internal model control (IMC)

−1

Q(s) P(s)

Pm(s)

r
u

y

+

−

Plant

Controller

Feedback is used only if the real plant P(s) deviates from the model
Pm(s). Q(s), P(s), Pm(s) must be stable.

If Pm(s) = P(s), the transfer function from r to y is P(s)Q(s).

Two equivalent diagrams
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1− QPm
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IMC design rules

When P = Pm, the transfer function from r to y is P(s)Q(s).

For perfect reference following, one would like to have Q(s) = P−1(s),
but that is not possible (why?)

Design rules:

◮ If P(s) is strictly proper, the inverse would have more zeros than
poles. Instead, one can choose

Q(s) = 1
(λs+ 1)n P−1(s)

where n is large enough to make Q proper. The parameter λ
determines the speed of the closed-loop system.

(cf. feedforward design in Lecture 4)

IMC design rules

◮ If P(s) has unstable zeros, the inverse would be unstable. Options:
◮ Remove every unstable factor (−βs+ 1) from the plant

numerator before inverting.
◮ Replace every unstable factor (−βs+ 1) with (βs+ 1). With

this option, only the phase is modified, not the amplitude
function.

◮ If P(s) includes a time delay, its inverse would have to predict the
future. Instead, the time delay is removed before inverting.

IMC design example 1 — first-order plant

P(s) = 1
τs+ 1

Q(s) = 1
λs+ 1 P(s)−1 =

τs+ 1
λs+ 1

C(s) = Q(s)
1− Q(s)P(s) =

τs+1
λs+1

1− 1
λs+1

=
τ
λ

(

1+ 1
sτ

)

︸ ︷︷ ︸
PI controller

Note that Ti = τ

This way of tuning a PI controller is known as lambda tuning

IMC design example 2 — non-minimum phase plant

P(s) = −βs+ 1
τs+ 1

Q(s) = (−βs+ 1)
(βs+ 1) P(s)−1 =

τs+ 1
βs+ 1

C(s) = Q(s)
1− Q(s)P(s) =

τs+1
βs+1

1− (−βs+1)
(βs+1)

=
τ
2β

(

1+ 1
sτ

)

︸ ︷︷ ︸
PI controller

Note that, again, Ti = τ

The gain is adjusted in accordance with the fundamental limitation
imposed by the RHP zero in 1/β .

IMC design for dead-time processes
Consider the plant model

Pm = P0me−sτ

where the deadtime τ is assumed known and constant.

Let C0 = Q/(1− QP0m) be a controller designed for the delay-free
plant model P0m. Then

Q = C0
1+ C0 P0m

The rule of thumb tell us to use the same Q also for systems with delays.
This gives

C = Q
1− QP0me−sτ =

C0
1+ (1− e−sτ )C0 P0m

This modification of C0 to account for a time delay is known as a Smith
predictor.

Smith predictor

−

−

C0 P

Pm

P0m

y1

y

y2

+

+

r u
PlantController

Ideally y and y1 cancel each other and only feedback from y2 “without
delay” is used. If P = Pm then

Y (s) = C0(s)P0m(s)
1+ C0(s)P0m(s)

e−sτ R(s)

Example

Plant: P(s) = 1
s+ 1 e−s, nominal controller: C0(s) = K

(

1+ 1
s

)

Simulation with K = 0.4, no Smith predictor:
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Example

Simulation with K = 1, no Smith predictor:
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Example

Simulation with K = 1 with Smith predictor:
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(But do not the forget the fundamental limitation imposed by the time
delay!)

Lecture 12 – summary

◮ Idea: Parameterize the closed loop as

Gyr = PQ SISO case, for IMC design
or

Gzw = Pzw − PzuQPyw General MIMO case, suitable
for optimization

for some stable Q.

◮ After designing Q, the controller is given by

C = Q
1− QP SISO case

or

C =
[

I − QPyu
]−1Q General MIMO case
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