FRTN10 Multivariable Control, Lecture 12

Automatic Control LTH, 2017

Course Outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance
L9-L11 Controller optimization: Analytic approach

L12-L14 Controller optimization: Numerical approach
12. Youla parameterization, internal model control
13. Synthesis by convex optimization
14. Controller simplification

Lecture 12 — Outline

1. The Quola parameterization

2. Internal model control (IMC)

[Glad&Ljung Section 8.4]

Basic idea of Youla and IMC

Assume stable SISO plant P. Model for design:

Q

Design @ to get desired closed-loop properties. Then C = W

General idea for Lectures 12-14

controlled variables z distubances w
B — le——
Plant

measurements y control inputs ©

Controller

The choice of controller corresponds to designing a transfer matrix @(s),
to get desirable properties of the following map from w to z:

%Pzw(s) - qu(S)Q(S)wa(s)

Once Q(s) has been designed, the corresponding controller can be found.

The Youla (Q) parameterization

General closed-loop control system:

<+—— P,u(s) Puls) —

wa(s) Pyu(s)

—C(s)

Z(s) = Pa(s)W(s) + Pou(s)U(s)
Y (s) = Pyu(s)W(s) + Pyu(s)U(s)
U(s) = —-C(s)Y (s)

The Youla (Q) parameterization

~——— P.y(s) Pu(s) =——
Pyu(s) Pyu(s)

—C(s)

Closed-loop transfer function from w to z:

Gow(8) = Paw(s) — Pau(s) C(s)[I + Pyu(s)C(s)]_1 Pyu(s)
=Q(s)

Given Q(s), the controlleris C(s) = [I — Q(s) Pyu (s)]_lQ(s)

All stabilizing controllers

P P
Suppose the plant P = [ 2w 2“] is stable. Then
Pyy Py,

> Stabilty of @ implies stability of P, — P, QP

> f1Q=C[I+ PyuCrl is unstable, then the closed loop is unstable.

Hence, if P is stable then all stabilizing controllers are given by
-1
C(s) = [I - Q(s)Pyul(s)] Q(s)

where Q(s) is an arbitrary stable transfer function.




Dealing with unstable plants

Po(s) z w
3 u ~— Py Py [—
' —Co (S) y u

If Po(s) is unstable, let Co(s) be some stabilizing controller. Then the
previous argument can be applied with P.,,, Pz, Py, and Pyg
representing the stabilized system.

Example — DC-motor

I

Assume we want to optimize the closed-loop transfer matrix from
(w1, ws)" to (21, 22)7,

P —-PC

+PC 1+PC
Gau(s) = [ 1 -C ]
I+PC  1+PC

when P(s) = %. How to parameterize all stabilizing controllers C(s)?

Stabilizing controller for DC-motor

Generalized plant model:

21 w1
29 -1 0 1| f*e—""" we
P 1 P|=
y u
= —Cls)

P(s) = % is not stable, so introduce
C(s) = Co(s) + Ci(s)

where C(s) = 1 stabilizes the plant; P.(s) = %f()s) = ﬁ

Redrawn diagram for DC-motor example
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z1=Pwi+ P(u—y)
zZo=wi+u—y

y=Pwi+ws+Plu—y) = yzl%,w1+1+%wg+1+ipi

Redrawn diagram for DC-motor example
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Apply optimization (Lec. 13) to find @(s). Then C(s) = 1+ %
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1. The Quola parameterization

2. Internal model control (IMC)

Internal model control (IMC)

Feedback is used only if the real plant P (s) deviates from the model
Ppy(s). Q(s), P(s), Pm(s) must be stable.

If Pp,(s) = P(s), the transfer function from r to y is P(s)Q(s).

Two equivalent diagrams




IMC design rules

When P = P,,, the transfer function from r to y is P(s)Q(s).
For perfect reference following, one would like to have @(s) = P~1(s),

but that is not possible (why?)

Design rules:

> If P(s) is strictly proper, the inverse would have more zeros than
poles. Instead, one can choose

1

“mrol ©

Q(s)

where n is large enough to make @ proper. The parameter A
determines the speed of the closed-loop system.

(cf. feedforward design in Lecture 4)

IMC design rules

> If P(s) has unstable zeros, the inverse would be unstable. Options:
» Remove every unstable factor (—s + 1) from the plant
numerator before inverting.
> Replace every unstable factor (—fs + 1) with (8s + 1). With
this option, only the phase is modified, not the amplitude
function.
» If P(s) includes a time delay, its inverse would have to predict the
future. Instead, the time delay is removed before inverting.

IMC design example 1 — first-order plant

1
Pl) = Ts+1
1 1 Ts+1
Q) = As+1P(S) T As+1
__ Qe _ EH (1
C(s) = 1-Q(s)P(s) 1- 25 ) 1+ST
PI controller

Note that T; = T

This way of tuning a PI controller is known as lambda tuning

IMC design example 2 — non-minimum phase plant

— 1
PO =
_(=Bs+1) g Ts+1
)= st 1) PO = ey
_ Q(s) O BE o« 1
O = qepE T 1 e T 3 (1 * 7)
Pl controller

Note that, again, T; = T

The gain is adjusted in accordance with the fundamental limitation
imposed by the RHP zero in 1/.

IMC design for dead-time processes

Consider the plant model
P,, = Pgue "

where the deadtime 7 is assumed known and constant.

Let Co = @/(1 — QPon,) be a controller designed for the delay-free
plant model Py,,. Then

Co

Q= 17CoPon

The rule of thumb tell us to use the same @ also for systems with delays.

Smith predictor

Controller

This gives
Ideally v and y1 cancel each other and only feedback from yo “without
C= Q _ Co delay” is used. If P = P,, then
1-— QPOme*ST 1+ (1 - eiST)COPom
Y(S) _ CO(S)POM(S) efs‘rR(s)
This modification of Cp to account for a time delay is known as a Smith T 14 Co(s)Pom(s)
predictor.
Example Example

1 1
Plant: P(s) = 1efs, nominal controller: Co(s) = K (1 + 7)
s

s+

Simulation with K = 0.4, no Smith predictor:

15

Output
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Simulation with K = 1, no Smith predictor:
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Example Lecture 12 — summary

Simulation with K = 1 with Smith predictor: .
> |dea: Parameterize the closed loop as

Gy = PQ SISO case, for IMC design
or

Output

G = Poywy — PouQPyy, General MIMO case, suitable
for optimization

for some stable @.

> After designing @, the controller is given by

Input

05 Q
C=—— SISO case
0 e 1-QP
0 2 4 6 8 10 12 14 16 18 20
Time or
(But do not the forget the fundamental limitation imposed by the time C = [I _ pru]*lQ General MIMO case

delay!)




