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Course Outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance
L9-L11 Controller optimization: Analytic approach
L12-L14 Controller optimization: Numerical approach

@ Youla parameterization, internal model control
@ Synthesis by convex optimization
@ Controller simplification
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Lecture 12 — Outline

0 The Quola parameterization

Q Internal model control (IMC)

[Glad&Ljung Section 8.4]
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Basic idea of Youla and IMC

Assume stable SISO plant P. Model for design:

. C(s) PEs)
r y
< — Q@) [ P(s) —
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irpc -9
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=150

Q

Design @ to get desired closed-loop properties. Then C = m
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General idea for Lectures 12-14

controlled variables z distubances w
- | le—oo
Plant
measurements y control inputs ©
> Controller

The choice of controller corresponds to designing a transfer matrix Q(s),
to get desirable properties of the following map from w to z:

<—Pzw(s) = qu(s)Q(s)wa(S) ~

Once Q(s) has been designed, the corresponding controller can be found.
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The Youla (Q) parameterization

General closed-loop control system:
z w
<~ P,,(s) Pu(s) =—
Py (s) Pyu(s)

A

—C(s)

Y

Z(s) = P (s)W(s) + P.u(s)U(s)
Y (s) = Pyuw(s)W(s) + Pyu(s)U(s)
U(s) = —C(s)Y (s)
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The Youla (Q) parameterization

<~ Pu(s) Pu(s) =——

wa(s) Pyu(s)

A

Y

—C(s)

Closed-loop transfer function from w to z:

Gaw(s) = Paw(s) — Pau(s) C(s) [I + Pyu(s)C(s)]_l Py (s)
=Q(s)

Given Q(s), the controller is C(s) = [I — Q(s)Pyu(s)]_lQ(s)
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All stabilizing controllers

P P
Suppose the plant P = [ » zu] is stable. Then
Py [Pyu

@ Stabilty of @ implies stability of P,,, — P,, QP
0 If@ = C[I + PyuC]_1 is unstable, then the closed loop is unstable.

Hence, if P is stable then all stabilizing controllers are given by
-1
C(s) = [I — Q(s) Pyu(s)] " Q(s)

where Q(s) is an arbitrary stable transfer function.
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Dealing with unstable plants

V4 w
¢ | Pzw Pzz? ™
P, P, i<
y u
 _C,

If Po(s) is unstable, let C(s) be some stabilizing controller. Then the
previous argument can be applied with P, Pz, Py, and P,;
representing the stabilized system.
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Example — DC-motor

w1 22

+ 21

—— C(S) - P(S)

f)ﬁlﬂz
=1

Assume we want to optimize the closed-loop transfer matrix from
(w1, wo)T to (21, 22)7,

P —PC
1+PC 14+PC
Gaw(s) = +1 J:c

1+PC 1+PC

when P(s) = 3(8221). How to parameterize all stabilizing controllers C(s)?
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Stabilizing controller for DC-motor

Generalized plant model:

21 w1
zo ™ (|1 O 1| wy
P 1 P|™
3 u
= —C(s)
P(s) = % is not stable, so introduce
C(S) = C()(S) + Cl(s)
where Cy(s) = 1 stabilizes the plant, P.(s) = Pl — 20

1+P(s) ~ s2+s+20
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Redrawn diagram for DC-motor example

i w
- o P~ *
2~ ||t o 1| w2
! P 1 P ; -
y 1 1 u
\RE, s
= —Ci(s)

z1=Pwi; + P(u—y)
Zo=wi+u—y

y=Pwi+ws+Plu—-y) = y=1+pr1+1J%Pw2+1+Lpl7
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Redrawn diagram for DC-motor example

47[ P, —P, P, ] l-——

1-P, P.—1 1-P,
P, 1=, P,

y u
—C1(s)
Pyﬂ = P,
| P —P, P,
sz_[l—Pc Pc—l] [1—PC]Q\[PC )

Apply optimization (Lec. 13) to find @(s). Then C(s) = 1 + %
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Lecture 12 — Outline

0 The Quola parameterization

Q Internal model control (IMC)
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Internal model control (IMC)

At iy i ) ' Plant

Feedback is used only if the real plant P(s) deviates from the model
P,.(s). Q(s), P(s), Pn(s) must be stable.

If P, (s) = P(s), the transfer function from r to y is P(s)Q(s).
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Two equivalent diagrams

Ve

!
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IMC design rules

When P = P,,, the transfer function from r to y is P(s)Q(s).
For perfect reference following, one would like to have @(s) = P~1(s),
but that is not possible (why?)

Design rules:

o If P(s) is strictly proper, the inverse would have more zeros than
poles. Instead, one can choose

1

Q(s) = Us+1)

P7(s)

where n is large enough to make @ proper. The parameter A
determines the speed of the closed-loop system.

(cf. feedforward design in Lecture 4)
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IMC design rules

@ If P(s) has unstable zeros, the inverse would be unstable. Options:

» Remove every unstable factor (—fs + 1) from the plant
numerator before inverting.

» Replace every unstable factor (—fs + 1) with (Bs + 1). With
this option, only the phase is modified, not the amplitude
function.

@ If P(s) includes a time delay, its inverse would have to predict the
future. Instead, the time delay is removed before inverting.
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IMC design example 1 — first-order plant

1
P —
(S) s+ 1
+1
- i TS
Q)= 75 7P0 " = 5
Q(s) AE NG ( 1 )
C(s) = Sy e
1-Q(s)P(s) 1—41; 4 sT
N———
Pl controller

Note that T; = T

This way of tuning a Pl controller is known as lambda tuning

Automatic Control LTH, 2017 FRTN10 Multivariable Control, Lecture 12



IMC design example 2 — non-minimum phase plant

=
_(=Bs+1) 1) s+ 1
) ="er ) O~ Ber1
Q(s) i T ( 1)
C == = -
O = Tqpe) "1 e 3\t

Pl controller

Note that, again, T; = T
The gain is adjusted in accordance with the fundamental limitation
imposed by the RHP zero in 1/8.

Automatic Control LTH, 2017 FRTN10 Multivariable Control, Lecture 12



IMC design for dead-time processes

Consider the plant model
P,, = Py, "

where the deadtime T is assumed known and constant.

Let Cop = Q/(1 — QPon,) be a controller designed for the delay-free
plant model Py,,. Then

Co

Q= 1+ CoPop

The rule of thumb tell us to use the same @ also for systems with delays.
This gives

1— QPyues" 1+ (1 = e_ST)C()P()m

C

This modification of Cy to account for a time delay is known as a Smith
predictor.
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Smith predictor

Controller

,,,,,,,,,,,,,,,,,,,,,,,,,,

Plant

Ideally y and y; cancel each other and only feedback from yg “without
delay” is used. If P = P,, then

_ C()(S)P()m(s)
Y = 15 Co(5) Pon5)

e *"R(s)
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Plant: P(s) =

1
s 1e_s, nominal controller: Co(s) = K1+ 5

Simulation with K = 0.4, no Smith predictor:

15

Output

Input

20
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Simulation with K = 1, no Smith predictor:

Time

Time
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Simulation with K = 1 with Smith predictor:

1.5

Output
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(But do not the forget the fundamental limitation imposed by the time
delay!)
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Lecture 12 — summary

@ |dea: Parameterize the closed loop as

G, = PQ SISO case, for IMC design
or

G.w = P,y — P,,QPy, General MIMO case, suitable
for optimization
for some stable Q.

@ After designing @, the controller is given by
Q) e

1—QP
or

C = [I — QPyu]_lQ General MIMO case

C SISO case
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