
FRTN10 Multivariable Control, Lecture 12

Automatic Control LTH, 2017

Automatic Control LTH, 2017 FRTN10 Multivariable Control, Lecture 12



Course Outline

L1-L5 Specifications, models and loop-shaping by hand

L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach

L12-L14 Controller optimization: Numerical approach

12 Youla parameterization, internal model control

13 Synthesis by convex optimization

14 Controller simplification
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Lecture 12 – Outline

1 The Quola parameterization

2 Internal model control (IMC)

[Glad&Ljung Section 8.4]
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Basic idea of Youla and IMC

Assume stable SISO plant P. Model for design:

r y
Σ C(s) P(s)

−1

\
r y

Q(s) P(s)

PC

1+ PC
= PQ

Q =
C

1+ PC

Design Q to get desired closed-loop properties. Then C =
Q

1− QP
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General idea for Lectures 12–14

Plant

Controller

✛ ✛

✛

✲

control inputs u

controlled variables z

measurements y

distubances w

The choice of controller corresponds to designing a transfer matrix Q(s),
to get desirable properties of the following map from w to z:

z w

Pzw(s) − Pzu(s)Q(s)Pyw(s)

Once Q(s) has been designed, the corresponding controller can be found.
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The Youla (Q) parameterization

General closed-loop control system:

Pzw(s) Pzu(s)

Pyw(s) Pyu(s)

−C(s)

✛ ✛

✛

✲

u

z

y

w

Z(s) = Pzw(s)W(s) + Pzu(s)U(s)

Y (s) = Pyw(s)W(s) + Pyu(s)U(s)

U(s) = −C(s)Y (s)

Automatic Control LTH, 2017 FRTN10 Multivariable Control, Lecture 12



The Youla (Q) parameterization

Pzw(s) Pzu(s)

Pyw(s) Pyu(s)

−C(s)

✛ ✛

✛

✲

u

z

y

w

Closed-loop transfer function from w to z:

Gzw(s) = Pzw(s) − Pzu(s)C(s)
[

I + Pyu(s)C(s)
]−1

︸ ︷︷ ︸
=Q(s)

Pyw(s)

Given Q(s), the controller is C(s) =
[

I − Q(s)Pyu(s)
]−1

Q(s)
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All stabilizing controllers

Suppose the plant P =

[

Pzw Pzu

Pyw Pyu

]

is stable. Then

Stabilty of Q implies stability of Pzw − PzuQPyw

If Q = C
[

I + PyuC
]−1

is unstable, then the closed loop is unstable.

Hence, if P is stable then all stabilizing controllers are given by

C(s) =
[

I − Q(s)Pyu(s)
]−1

Q(s)

where Q(s) is an arbitrary stable transfer function.
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Dealing with unstable plants

ũ

w

y

z

P0(s)

−C0(s)

−C1(s)

Pzw Pzũ

Pyw Pyũ

−C1

✛ ✛

✛

✲

ũ

z

y

w

If P0(s) is unstable, let C0(s) be some stabilizing controller. Then the

previous argument can be applied with Pzw, Pzũ, Pyw, and Pyũ

representing the stabilized system.
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Example – DC-motor

+

+

+

+

P(s)C(s)

−1

z2w1

w2

z1

Assume we want to optimize the closed-loop transfer matrix from

(w1, w2)
T to (z1, z2)

T ,

Gzw(s) =

[

P
1+PC

−PC
1+PC

1

1+PC
−C

1+PC

]

when P(s) = 20

s(s+1) . How to parameterize all stabilizing controllers C(s)?
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Stabilizing controller for DC-motor

Generalized plant model:

w1

w2

z1

z2

y u





P 0 P

1 0 1

P 1 P





−C(s)

P(s) = 20

s(s+1) is not stable, so introduce

C(s) = C0(s) + C1(s)

where C0(s) = 1 stabilizes the plant; Pc(s) =
P(s)

1+P(s) =
20

s2+s+20

Automatic Control LTH, 2017 FRTN10 Multivariable Control, Lecture 12



Redrawn diagram for DC-motor example

ũ

w1

w2

z1

z2

y





P 0 P

1 0 1

P 1 P





−1

−C1(s)

z1 = Pw1 + P(ũ− y)

z2 = w1 + ũ− y

y = Pw1 + w2 + P(ũ− y) [ y = P
1+P

w1 +
1

1+P
w2 +

P
1+P

ũ
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Redrawn diagram for DC-motor example

y ũ





Pc −Pc Pc

1− Pc Pc − 1 1− Pc

Pc 1− Pc Pc





−C1(s)

Pyũ = Pc

Gzw =

[

Pc −Pc

1− Pc Pc − 1

]

︸ ︷︷ ︸
Pzw

−

[

Pc

1− Pc

]

︸ ︷︷ ︸
Pzũ

Q
[

Pc 1− Pc

]

︸ ︷︷ ︸
Pyw

Apply optimization (Lec. 13) to find Q(s). Then C(s) = 1+ Q(s)
1−Q(s)Pyũ(s)
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Lecture 12 – Outline

1 The Quola parameterization

2 Internal model control (IMC)
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Internal model control (IMC)

−1

Q(s) P(s)

Pm(s)

r

u

y

+

−

Plant

Controller

Feedback is used only if the real plant P(s) deviates from the model

Pm(s). Q(s), P(s), Pm(s) must be stable.

If Pm(s) = P(s), the transfer function from r to y is P(s)Q(s).
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Two equivalent diagrams

−1

Q P

Pm

r
u

y

+
−

Q

1− QPm

−1

P
r u y
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IMC design rules

When P = Pm, the transfer function from r to y is P(s)Q(s).

For perfect reference following, one would like to have Q(s) = P−1(s),
but that is not possible (why?)

Design rules:

If P(s) is strictly proper, the inverse would have more zeros than

poles. Instead, one can choose

Q(s) =
1

(λs+ 1)n
P−1(s)

where n is large enough to make Q proper. The parameter λ

determines the speed of the closed-loop system.

(cf. feedforward design in Lecture 4)
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IMC design rules

If P(s) has unstable zeros, the inverse would be unstable. Options:

Remove every unstable factor (−βs+ 1) from the plant

numerator before inverting.

Replace every unstable factor (−βs+ 1) with (βs+ 1). With

this option, only the phase is modified, not the amplitude

function.

If P(s) includes a time delay, its inverse would have to predict the

future. Instead, the time delay is removed before inverting.
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IMC design example 1 — first-order plant

P(s) =
1

τs+ 1

Q(s) =
1

λs+ 1
P(s)−1 =

τs+ 1

λs+ 1

C(s) =
Q(s)

1− Q(s)P(s)
=

τs+1

λs+1

1− 1

λs+1

=
τ

λ

(

1+
1

sτ

)

︸ ︷︷ ︸
PI controller

Note that Ti = τ

This way of tuning a PI controller is known as lambda tuning
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IMC design example 2 — non-minimum phase plant

P(s) =
−βs+ 1

τs+ 1

Q(s) =
(−βs+ 1)

(βs+ 1)
P(s)−1 =

τs+ 1

βs+ 1

C(s) =
Q(s)

1− Q(s)P(s)
=

τs+1

βs+1

1− (−βs+1)
(βs+1)

=
τ

2β

(

1+
1

sτ

)

︸ ︷︷ ︸
PI controller

Note that, again, Ti = τ

The gain is adjusted in accordance with the fundamental limitation

imposed by the RHP zero in 1/β .
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IMC design for dead-time processes

Consider the plant model

Pm = P0me−sτ

where the deadtime τ is assumed known and constant.

Let C0 = Q/(1− QP0m) be a controller designed for the delay-free

plant model P0m. Then

Q =
C0

1+ C0 P0m

The rule of thumb tell us to use the same Q also for systems with delays.

This gives

C =
Q

1− QP0me−sτ
=

C0

1+ (1− e−sτ )C0 P0m

This modification of C0 to account for a time delay is known as a Smith

predictor.
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Smith predictor

−

−

C0 P

Pm

P0m

y1

y

y2

+

+

r u

Plant
Controller

Ideally y and y1 cancel each other and only feedback from y2 “without

delay” is used. If P = Pm then

Y (s) =
C0(s)P0m(s)

1+ C0(s)P0m(s)
e−sτ R(s)
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Example

Plant: P(s) =
1

s+ 1
e−s, nominal controller: C0(s) = K

(

1+
1

s

)

Simulation with K = 0.4, no Smith predictor:
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Example

Simulation with K = 1, no Smith predictor:
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Example

Simulation with K = 1 with Smith predictor:
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(But do not the forget the fundamental limitation imposed by the time

delay!)

Automatic Control LTH, 2017 FRTN10 Multivariable Control, Lecture 12



Lecture 12 – summary

Idea: Parameterize the closed loop as

Gyr = PQ SISO case, for IMC design

or

Gzw = Pzw − PzuQPyw General MIMO case, suitable

for optimization

for some stable Q.

After designing Q, the controller is given by

C =
Q

1− QP
SISO case

or

C =
[

I − QPyu

]−1
Q General MIMO case
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