
FRTN10 Multivariable Control, Lecture 11

Automatic Control LTH, 2017

Course Outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach
9. Linear-quadratic control

10. Kalman filtering, LQG
11. More on LQG

L12-L14 Controller optimization: Numerical approach

Lecture 11 – Outline

1. Tuning the LQG controller

2. Robustness of LQG

3. Integral action, reference values

[Glad&Ljung sections 9.1–9.4 and 5.7]

Summary of LQG

Given white noise (v1v2) with intensity
(

R1 R12
RT

12 R2

)

and the linear plant

ẋ(t) = Ax(t) + Bu(t) + Nv1(k)
y(t) = Cx(t) + v2(t)

consider controllers of the form

˙̂x(t) = Ax̂(t) + Bu(t) + K
(

y(t) − Cx̂(t)
)

u(t) = −Lx̂(t)
The stationary variance

E
(

xT Q1 x+ 2xT Q12u+ uT Q2u
)

is minimized when

L = Q−1
2 (SB+ Q12)T K = (PCT + N R12)R−1

2

0 = Q1 + AT S + S A− (SB+ Q12)Q−1
2 (SB+ Q12)T

0 = N R1 NT + AP + PAT − (PCT + N R12)R−1
2 (PCT + N R12)T

The LQG controller

CLQG(s) P(s)

−I

u y

The controller transfer function (from −y to u) is given by

CLQG(s) = L(sI − A+ BL + KC)−1 K

◮ Same order as the plant model

Several options in Matlab:

◮ L = lqr(..), K = lqe(..), C_LQG = reg(P,L,K)
◮ L = lqr(..), obs = kalman(..), C_LQG = lqgreg(obs,L)
◮ C_LQG = lqg(P,Q,R)

Lecture 11 – Outline

1. Tuning the LQG controller

2. Robustness of LQG

3. Integral action, reference values

How to choose the cost function

◮ In rare instances, a quadratic cost function follows directly from the
design specifications

◮ In most cases, the cost function must be iteratively tuned by the
designer to achieve the desired closed-loop behavior

Some possible starting points:

◮ Only penalize the outputs y = Cx and the inputs u; put Q1 = CTC,
Q2 = ρ I, and Q12 = 0

◮ Make the diagonal elements equal to the inverse value of the square
of the allowed deviation:

Q1 =




1
(xmax

1)2 . . . 0
...

. . .

0 1
(xmax

n)2




, Q2 =




1
(umax

1)2 . . . 0
...

. . .

0 1
(umax

m)2




, Q12 = 0

Tuning the cost function

◮ To achieve higher bandwidth (more aggressive control), decrease Q2
(or, equivalently, increase Q1)

◮ To increase the damping of a state x j, add penalty on ẋ2
j

◮ To make a state x j behave more like ẋ j = −αx j, add penalty on
(ẋ j +αx j)2

Note that

ẋ2
j = (A j x+ B ju)T(A j x+ B ju)
= xT(AT

j A j)x+ 2xT(AT
j B j)u+ uT(BT

j B j)u

1

Example — Flexible servo

F
m1 m2

y1 y2

d1 d2

k

m1
d2 y1
dt2 = −d1

dy1
dt − k(y1 − y2) + F(t)

m2
d2 y2
dt2 = −d2

dy2
dt + k(y1 − y2)

Open-loop response

Response to impulse input disturbance:

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

y
1

0 0.5 1 1.5 2 2.5 3

Time

0

0.2

0.4

0.6

y
2

First iteration

Minimize E (y2
2 + u2) = E (xT(CT

2 C2)x+ u2)

0 0.5 1 1.5 2 2.5 3
-0.01

0

0.01

0.02

0.03

y
2

0 0.5 1 1.5 2 2.5 3

Time

-30

-20

-10

0

10
u

Too fast, control signal too aggressive

Second iteration

Minimize E (xT(CT
2 C2)x+ 100u2)

0 0.5 1 1.5 2 2.5 3
-0.05

0

0.05

0.1

0.15

y
2

0 0.5 1 1.5 2 2.5 3

Time

-6

-4

-2

0

2
u

Good speed, needs improved damping

Third iteration

Minimize E (y2
2 + 0.1ẏ2

2 + 100u2) =
E (xT(CT

2 C2 + 0.1(C2 A)T(C2 A))x+ 100u2)

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

y
2

0 0.5 1 1.5 2 2.5 3

Time

-10

-5

0

5
u

Better damping, but more aggressive control signal

Tuning the Kalman filter

◮ The real noise properties are seldomly known
◮ As a starting point put N = B, R1 = I, and R2 = ρ I
◮ If the controller is too sensitive to measurement noise, increase R2
◮ If the robustness of the closed loop degrades too much when using

the Kalman filter for output feedback, decrease R2

Noise shaping

The Kalman filter can be tuned by extending the model with filters that
shape the process and measurement noise spectra:

u

w1 w2

y
ΣΣ

H1(s)

P(s)

H2(s)

◮ Dominating load disturbance frequencies are modeled via H1 –
increases gain of Kalman filter (and of resulting LQG controller)

◮ Dominating measurement disturbance frequencies are modeled via
H2 – decreases gain of Kalman filter (and of resulting LQG controller)

Lecture 11 – Outline

1. Tuning the LQG controller

2. Robustness of LQG

3. Integral action, reference values

2

Robustness of LQG controllers

[IEEE Transactions on Automatic Control, 23:4, 1978]

Example (Doyle & Stein, 1979)

Benign minimum-phase SISO plant (no fundamental limitations):

A =

−4 −3

1 0


 , B =


1

0


 , N =


−61

35


 , C =


1 2




Q1 = 80

 1

√
35√

35 35


 , Q2 = 1, R1 = 1, R2 = 1

gives

◮ Control poles: −7± 2i
◮ Observer poles: −7.02± 1.95i

Example (Doyle & Stein, 1979)

-2.5 -2 -1.5 -1 -0.5 0
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
From: y1 To: Out(1)

Nyquist Diagram

Real Axis

Im
a
g
in

a
ry

 A
x
is

Ms = 4.8, φm = 14.8○

Loop transfer recovery

The robustness of an LQG controller can often be improved by either

◮ adding a penalty proportional to CTC to Q1
◮ adding a penalty proportional to BBT to N R1 NT

Makes the loop transfer function more similar to the state feedback (LQ)
loop gain

Price: Higher controller gain

Doyle & Stein’s example with LTR

Qnew
1 = Q1 + 400CTC

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
From: y1 To: Out(1)

Nyquist Diagram

Real Axis

Im
a
g
in

a
ry

 A
x
is

Ms = 2.0, φm = 30○

Lecture 11 – Outline

1. Tuning the LQG controller

2. Robustness of LQG

3. Integral action, reference values

Integral action via noise shaping

Extend the plant model with a low-frequency disturbance acting on the
process input:

u

w

y
Σ P(s)

1
s+ ε

With a small ε, the Kalman filter (and hence also the resulting LQG
controller) will include a near integrator

Integral action via explicit integration

Add explicit integrators ẋi = r− y to track reference values without error.

Gives extended plant model

 ẋ

ẋi


 =


 A 0
−C 0





 x

xi


+


B

0


 u+


0

I


 r+


N

0


 v1

Extended state feedback law from LQ design:

u = −

L Li





 x

xi




Including a penalty on xi in the LQ design makes y → r in case of a
constant load disturbance or step reference change

(Matlab: lqi, lqgtrack, lqg)

3

Linear-quadratic-integral control in Matlab

lqi computes an optimal state-feedback control law for the tracking

loop shown below. For a plant SYS with state-space equations

dx/dt = Ax + Bu, y = Cx + Du, the state-feedback control is of the form

u = - K [x; xi] where xi is the integrator output.

.---------------------.

x | .---. | x

’--->| | |

e = r-y .----------. |-K | .---’---.

r ---->O----------|Integrator|------->| |------->| SYS |-----> y

^ ’----------’ xi ’---’ u ’-------’ |

|- |

| |

’--’

[K,S,E] = lqi(SYS,Q,R,N) calculates the optimal gain matrix K given a

state-space model SYS of the plant and weighting matrices Q,R,N. The

control law u = -K z = -K [x;xi] minimizes the cost function

J(u) = Integral {z’Qz + u’Ru + 2*z’Nu}

Reference handling without integration

Simple solution using feedforward from r:

u(t) = −Lx̂(t) + Lrr(t)

Assuming we want to achieve y = r, select

Lr = [C(BL − A)−1 B]−1

to ensure static gain I from r to y

A reference filter to further shape Gyr(s) can be added if needed

LQG example — Control of DC-servo

r = 0 P(s)F(s) C(s)

−1

ΣΣΣ
u

v1 v2

z y

Process: P(s) = 20
s(s+ 1)

Cost function: J = E (z2 + u2)

White noise intensities: R1 = 1, R2 = 1, R12 = 0

LQG design

State-space model:

[

ẋ1
ẋ2

]

=

A︷ ︸︸ ︷
[

0 0
1 −1

] [

x1
x2

]

+

B︷ ︸︸ ︷
[

20
0

]

u+

N︷ ︸︸ ︷
[

20
0

]

v1

y =
[

0 1
]

︸ ︷︷ ︸
C

[

x1
x2

]

+ v2 z = x2

Cost matrices:
Q1 =

[

0 0
0 1

]

Q2 = 1

Solving the Riccati equations gives the optimal controller

˙̂x = (A− BL)x̂+ K
(

y− Cx̂
)

u = −Lx̂

where

L =
[

0.2702 0.7298
]

K =
[

20.0000
5.4031

]

Gang of four

10
-1

10
0

10
1

10
2

10
-2

10
-1

10
0

10
1

M
a
g
n
it
u
d
e
 (

a
b
s
)

P/(1+PC)

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

-2

10
-1

10
0

10
1

M
a
g
n
it
u
d
e
 (

a
b
s
)

PC/(1+PC)

Frequency (rad/s)

10
-1

10
0

10
1

10
2

10
-2

10
-1

10
0

10
1

M
a
g
n
it
u
d
e
 (

a
b
s
)

C/(1+PC)

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

-2

10
-1

10
0

10
1

M
a
g
n
it
u
d
e
 (

a
b
s
)

1/(1+PC)

Frequency (rad/s)

Nonzero static gain in P
1+PC indicates poor low-freq. disturbance rejection

Integral action

Add explicit integrator ẋi = r− y and extend the model (assuming r = 0):





ẋ1
ẋ2
ẋi



 =

Ae︷ ︸︸ ︷




0 0 0
1 −1 0
0 −1 0









x1
x2
xi



+

Be︷ ︸︸ ︷




20
0
0



u+

Ne︷ ︸︸ ︷




20
0
0



 v1

Minimization of E
(

x2
2 + 0.01x2

i + u2) gives the optimal state feedback

u = −Le
[

x̂ xi
]

where
Le =

[

0.2751 0.7569 −0.1
]

We can use the same Kalman filter as before (xi needs not be estimated)

Gang of four with integral action

10
-1

10
0

10
1

10
2

10
-2

10
-1

10
0

10
1

M
a
g
n
it
u
d
e
 (

a
b
s
)

PC/(1+PC)

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

-2

10
-1

10
0

10
1

M
a
g
n
it
u
d
e
 (

a
b
s
)

P/(1+PC)

Frequency (rad/s)

10
-1

10
0

10
1

10
2

10
-2

10
-1

10
0

10
1

M
a
g
n
it
u
d
e
 (

a
b
s
)

C/(1+PC)

Frequency (rad/s)
10

-1
10

0
10

1
10

2
10

-2

10
-1

10
0

10
1

M
a
g
n
it
u
d
e
 (

a
b
s
)

1/(1+PC)

Frequency (rad/s)

Matlab code for DC-servo example

A = [0 0; 1 -1];

B = [20; 0];

C = [0 1];

sys = ss(A,B,C,0);

Q1 = C’*C;

Q2 = 1;

N = B;

R1 = 1;

R2 = 1;

%% Design LQG controller

L = lqr(A,B,Q1,Q2) % Calculate LQ feedback gain

K = lqe(A,N,C,R1,R2) % Calculate Kalman gain

ctrl = -reg(sys,L,K); % Form LQG regulator

4

Matlab code for DC-servo example, cont’d

%% Design LQG controller with integral action, version 1

Qi = 0.01;

Le = lqi(sys,blkdiag(Q1,Qi),Q2) % Calculate LQI feedback gain

sysk = ss(A,[B N],C,[0 0]); % Define system with noise

obs = kalman(sysk,R1,R2); % Calculate Kalman filter

ctrl_i1 = lqgtrack(obs,Le,’1dof’) % Form LQG regulator

%% Design LQG controller with integral action, version 2

Qi = 0.01;

ctrl_i2 = lqg(sys,blkdiag(Q1,Q2),blkdiag(N*R1*N’,R2),Qi,’1dof’)

Summary of LQG

Advantages

◮ Works fine with multivariable models
◮ Observer structure ties to reality
◮ Always stabilizing
◮ Well developed theory, analytic solutions

Disadvantages

◮ High-order controllers (same order as the extended plant model)
◮ Sometimes hard to choose weights
◮ No robustness guarantees – must always check the resulting

controller!
◮ Quadratic criterion (H2) not always the most suitable design

requirement

Alternative norms for optimization

Plant

Controller

✛ ✛

✛

✲
control inputs u

controlled variables z

measurements y

distubances v

Common alternative: H∞ optimal control:

Minimize sup
ω
qGzv(iω)q

Can be solved using a couple of Riccati equations, similar to the LQG
problem (Matlab: hinfsyn)

Lecture 11 – summary

◮ LQG design can produce a stabilizing controller for any controllable
and observable linear MIMO plant

◮ Cost function and noise model must be tuned to obtain the desired
closed-loop performance

◮ No robustness guarantees – always check the result!

Next section of the course: Optimization of controllers using numerical
methods

5

