FRTN10 Multivariable Control, Lecture 9

Automatic Control LTH, 2017

Course Outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance
L9-L11 Controller optimization: Analytic approach
9. Linear-quadratic control
10. Kalman filtering, LQG
11. More on LQG

L12-L14 Controller optimization: Numerical approach

Lecture 9 — Outline

1. Dynamic programming
2. The Riccati equation
3. Optimal state feedback

4. Stability and robustness

Sections 9.1-9.4 + 5.7 in the book treat essentially the same material as
we cover in lectures 9—11. However, the main derivation of the LQG
controller in 9.A and 18.5 is different.

A general optimization setup

controlled variables z distubances w
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Controller

The objective is to find a controller that optimizes the transfer matrix
Gy (s) from disturbances (and setpoints) w to controlled outputs z.

Lectures 9-11: Problems with analytic solutions
Lectures 12—14: Problems with numeric solutions

Today’s problem: Optimal state feedback
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e 1= () (& &) ()«

subjectto  %(¢) = Ax(¢) + Bu(f),  x(0) =xo

Q= [g% %12] > 0 is a symmetric weighting matrix (design parameter)
12 2

Why linear-quadratic control?

» Simple, analytic solution
» Quadratic cost function gives linear state feedback control law

> Always stabilizing
» Works for MIMO systems
» Guaranteed robustness (in the state feedback case)

» Foundation for more advanced methods like model-predictive control
(MPC)
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1. Dynamic programming

Mini-problem

Determine ug and u; if the objective is to minimize
*F +ad+ul+ul
when

X1 = X0 + Uo

Xg = x1+ U

Hint: Go backwards in time.




Solution to mini-problem

Break the problem into smaller parts that can be solved sequentially:

cof2 2 e oy fa e a9
min {x+a3+ug+ui} = H.ll})n{xl +up +min {x5 +ui} (xl)}

J1(a1)

J1(x1) = min {(ac1+u1)2 + u%} = min {2(u1+%x1)2 + %x%}
uy ul

= %x% with minimum attained for u; = —%xl

Jo(xo) = min {(xo+uo)? + uf + J1(x)} = min {g(uo+gxo)2 + %x%}
uo uo

= %x% with minimum attained for ug = —%xo

Quadratic optimal cost

It can be shown that the optimal cost on the time interval [¢, 0o0) is
quadratic:

min ftw [x(T)]TQ [x(f)] dr = 2"(t)Sx(t), S=ST>0

ult, ) u(7) u(r)
when

%(t) = Ax(t) + Bu(t)
and

(@1 Q2
Q‘[% Q2]>O

Dynamic programming, Richard E. Bellman, 1957

Lothe T
QO ]
An optimal trajectory on the time interval

[t, T] must be optimal also on each of the
subintervals [¢, ¢ + €] and [¢ + €, T1.

Dynamic programming in linear-quadratic control

Let x; = x(t), u; = u(¢). For atime step of length €,

x(t+€) =x,+ (Ax, + Buy)e ase—0

Foumgn [ (1) o ()

AN < (x(7) T x(T)
— N t t d
Bk { () e (2] [ G0 e (i) }
= H’ltin {(x;Tlet + 2xtTQ12ut + utTQzut)f
T
+ [x, + (Ax, + But)e] S [xt + (Ax, + Bu;)e]}
by definition of S. Neglecting €2 gives Bellman’s equation:

0= min {(x?‘let + 227 Quou, + utTQzut) + 2xtTS(Ax, + But)}
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2. The Riccati equation

Completion of squares

Suppose @, > 0. Then

xTQxx + 2xTquu + uTQuu
= (u+ Q' QL) Qulu + Q' Q1) + 2'(Q: — Qu@,'QL,)x
is minimized by
u= _QEIQZc‘ux
The minimum is

xT(Qx - quQ;lec‘u)x

The Riccati equation

Completion of squares in Bellman’s equation gives
0= multn {(xtTlet + 2xtTQ12ut + utTQzut) + 2xtTS(Axt + But)}
= n’lltlll’l {xtT[Ql + ATS + SAJx; + 24T [Q12 + SBJu, + utTqut}
= x7(Q1 + ATS + SA— (SB+ Q1)@ (SB + Q1) )
with minimum attained for
u =—Q3'(SB+ Q1) x;
The equation
0=Q1+ATS+SA—(SB+Q12)Q3'(SB + Qu2)”

is called the algebraic Riccati equation

Jocopo Francesco Riccati, 1676-1754




Solving algebraic Riccati equations in Matlab

care Solve continuous-time algebraic Riccati equations.

[X,L,G] = care(A,B,Q,R,S,E) computes the unique stabilizing
solution X of the continuous-time algebraic Riccati equation
-1
A’XE + E’XA - (E’XB + S)R (B'XE + S’) + Q=0 .

When omitted, R, S and E are set to the default values R=I,
S=0, and E=I. Beside the solution X, care also returns the
gain matrix
-1
G=R (B'XE + S’")

and the vector L of closed-loop eigenvalues (i.e.,
EIG(A-B*G,E)).
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3. Optimal state feedback

Linear-quadratic optimal control

Control problem:
Minimize foc (xT(t)ch(t) + 2¢7(¢) Quau(t) + uT(t)Qzu(t))dt
0

subjectto  %(t) = Ax(t) + Bu(t), x(0) =xo

Solution: Assume (A, B) controllable. Then there is a unique S > 0
solving the algebraic Riccati equation

0=Q1+ATS+SA— (SB+Q12)Q; (SB+ Q)"

The optimal control law is u = —Lx with L = @3(SB + Q12)7.

The minimal cost is xg S xp.

'stabilizable is sufficient, see G&L

Remarks

Note that the optimal control law does not depend on x.

The optimal feedback gain L is static since we are solving an
infinite-horizon problem.

(LQ theory can also be applied to finite-horizon problems and problems with
time-varying system matrices. We then obtain a Riccati differential equation for
S(¢) and a time-varying state feedback, u(¢) = —L(#)x(¢))

Example: Control of an integrator

For &(¢) = u(t), x(0) = xo,
Minimize J = fm {x()? + pu(t)®} d¢
0
0=1-S%/p = S=p
Slp=1/yp = u=—x/Vp
—x/\/p = x= xoe_t/‘/r7

J* = xLSxo = x3\/p

Riccati equation

Controller L

Closed loop system x

Optimal cost

What values of p give the fastest response? Why?

Solving the LQ problem in Matlab

lgr Linear-quadratic regulator design for state space systems

[K,S,E] = 1qr(SYS,Q,R,N) calculates the optimal gain matrix K
such that:

* For a continuous-time state-space model SYS, the state-
feedback law u = -Kx minimizes the cost function

J = Integral {x’Qx + u’Ru + 2*x’Nu} dt
subject to the system dynamics dx/dt = Ax + Bu
The matrix N is set to zero when omitted. Also returned are

the solution S of the associated algebraic Riccati equation
and the closed-loop eigenvalues E = EIG(A-B*K).

Example — Double integrator

a=(52) B= (%) @=(9) e=p 0= ()

States and inputs (dotted) for p = 0.01, p=0.1, p =1, p =10

Closed loop poles: | .
s=2"12p" 4 (—1xi) | .

Stochastic interpretation of LQ control

z white noise v
Plant
state x u
Controller

Minimize J=EZ2=E {xTle + 2xTQ12u + uTQzu}

subjectto  %(t) = Ax(¢) + Bu(t) +v(t)

where v is white noise with intensity R. Same Riccati equation and
solution S as in the deterministic case. The optimal cost is

J* =tr(SR)

where tr denotes matrix trace.




Lecture 9 — Outline

4. Stability and robustness

Stability of the closed-loop system

Assume that

(@1 Q2
Q‘[Qﬂ Q2]>O

and that there exists a solution S > 0 to the algebraic Riccati equation.
Then the optimal controller u(t) = —Lx(¢) gives an asymptotically stable
closed-loop system %(¢) = (A — BL)x(¢).

Proof:
%xT(t)Sx(t) =227 8% = 22T S(Ax + Bu)
= —(xTle +2x7Qu + uTqu) < Oforx(¢) #0

Hence x7(¢) Sx(t) is decreasing and tends to zero as ¢ — co.

Robustness of optimal state feedback

Nyquist Diagram

Imaginary Axis

EEE 0

T R — N
Real Axis

The distance from the loop gain L(iwI — A)™1B to —1 is never smaller
than 1. This is always true(!) when @1 > 0, @12 = 0 and Q2 > 0O is
scalar. The phase margin is at least 60° and the gain margin is infinite!

[For proof, see G&L Section 9.4]

Lecture 9 — summary

> We specify what “optimal” means using a quadratic cost function.

> Solving an algebraic Riccati equation gives the optimal state
feedback law u = —Lx:

0=Q1+ATS +SA—(SB+Q12)Q;'(SB+Q12)T = S
L=@Q3(SB+Q)7!

» The LQ controller has remarkable robustness properties.




