FRTN10 Multivariable Control, Lecture 8

Automatic Control LTH, 2017

Course Outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance

6. Controllability, observability, multivariable zeros
7. Fundamental limitations
8. Multivariable and decentralized control

L9-L11 Controller optimization: Analytic approach
L12-L14 Controller optimization: Numerical approach
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1. Transfer functions for MIMO systems

2. Limitations due to RHP zeros
3. Decentralized control

4. Decoupling

See “Lecture notes” and [G&L, Chapters 1, 7.7 (first part) and 8.3]

Typical process control system
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Figure 13-6. Automatic control system for Perco motor fuel alkylation process.

Example system: Distillation column

Example system: Distillation column
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P and C' are matrices and all signals are vectors — order matters!
Z =PCR+PD—PC(N+Z)
(I+PC)Z =PCR+ PD - PCN
Z=(I+PC)"'PC R+ (I +PC)"'PD—(I+PC)"'PC N
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Sensitivity functions for MIMO systems

Output sensitivity function:

(I+pPC)t=S
Input sensitivity function:

(I+cp)!
Mini-problem:

Find the transfer functions above in the block diagram on the
previous slide.

Some useful math relations

Notice the following identities:
(@) I+ POI"'P=PlI+CP|7!
(i5) C[I+PC]™'=[I+CP]'C
(#35) T = P[I + CP|"'C = PC[I + PC|™! = [I + PC|7'PC
(iv) S+T=1I

Proof:
The first equality follows by multiplication on both sides with (I + PC) from
the left and with (7 + C'P) from the right.
Left: [I + PC][I + PC]"'P[I + CP]=1I-[P+ PCP] = [[ + PC|P
Right: [ + PC|P[I + CP]™'[I + CP] = [ + PC|P - I = [I + PC|P
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2. Limitations due to RHP zeros

Hard limitations from RHP zeros

[G&L Theorem 7.9]

Assume that the MIMO system P(s) has a transmission zero z in the
RHP.

Let S(s) = [I + P(s)C(s)]~! and let Wg(s) be a scalar, stable and
minimum phase transfer function. Then the specification

[WsS|loo = sup & (Ws(iw)S(iw)) < 1
w
is only possible to meet if

Ws(2)| <1

Example: Control of MIMO system with RHP zero

[G&L Example 1.1]
Process:
2 3
P(S) — |:s-i—1 5T2:|
sHL s+l
Computing the determinant

2 3 —s+1
B A CE EES R PR Ve FE)

shows that the process has a RHP zero in 1, which will limit the
achievable performance.

[See lecture notes for details of the following slides]

Example — Controller 1

The controller

Ki(s+1) _ 3Ks(s+0.5)
2
Ci(s) = | g4 QKQS((:IO%)
s s(s+1)
gives the diagonal loop transfer matrix
Ki(=s+1)
s(s+2) 0
P(s)Cy(s) = 0 Ko (s+0.5)(—s+1)
s(s+1)(s+2)

The system is decoupled into two scalar loops, each with an unstable
zero at s = 1 that limits the bandwidth.

Closed-loop step responses from (ry, r2) to (y1, y2) for K1 = Ky =1
are shown on next slide.

Step responses using Controller 1
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No cross-coupling, but RHP zero shows up in both y; and ya.

Sensitivity sigma plot using Controller 1
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Example — Controller 2

The controller

Ki(s+1) K
R K
Ca(s) = L Ki{s+1) KJ

S
gives the triangular loop transfer matrix

Ki(=s+1) Ko (5s+T7)
P(s)Ca(s) = { 5(882) (S+%+l)}
s+1
Now the decoupling is only partial: Output 2 is not affected by r;.
Moreover, there is no RHP zero that limits the rate of response in 5!

The closed loop step responses for K1 = 1, Ko = 10 are shown on
next slide.

Step responses using Controller 2
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The RHP zero does not prevent a fast y» response to 72 but at the price of a
simultaneous undesired response in y;.

Sensitivity sigma plot using Controller 2

Singular Values
10' T :

— Singular values
—— wol
PSR M S N R S
_ — \\\
@ 0 |
2 L —
£ o T
Py
[
S
]
>
]
3
2 1L
s
10—2 L L L L
102 107 10° 10' 10? 10°

Frequency (rad/s)

Ws(s) = £, impossible to meet due to RHP zero

Example — Controller 3

The controller

—3K5(s+0.5)
C. (S) _ Ky 5(234:2)
3 2K>(s+0.5)
K s(s+1)

gives the triangular loop transfer matrix

K1(55+7) 0
P(s)Cs(s) = (H;}éfﬁ) Ka(—1+45)(s+0.5)
s+1 s(s+1)2(s+2)

In this case y; is decoupled from 72 and can respond arbitrarily fast for
high values of K, at the expense of bad behavior in y,. Step
responses for K1 = 10, K» = 1 are shown on next slide.

Step responses using Controller 3
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The RHP zero does not prevent a fast y; response to 71 but at the price of a
simultaneous undesired response in ys.

Sensitivity sigma plot using Controller 3
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Example — summary

To summarize, the example shows that even though a multivariable
RHP zero always gives a performance limitation, it is possible to
influence where the effects should show up.

Lecture 7 — Outline

3. Decentralized control




Decentralized control

Background in process control:

» A few important variables were controlled using the simple loop
paradigm: one sensor, one actuator, one controller

» As more loops were added, interaction was handled using
feedforward, cascade and midrange control, selectors, etc.

> Not always obvious how to associate sensors and actuators — the
pairing problem

Computer control and state-space design methods eventually led to
centralized MIMO control schemes (LQG, MPC, etc.)

Interaction between simple loops

—

4 Y1

T1 —

Process

(25}
02 Y2

T2 —

-

Yi(s) = Pu(s)Ui(s) + Pr2Us(s)
Ya(s) = Pa(s)Ui(s) + PazUs(s),

What happens when the controllers are tuned individually (C for Ppq
and Cs for Ps3), ignoring the cross-couplings?

Rosenbrock’s example

1 2
s+1 s+3

Pl =1 1
s+1 s+1

Very benign subsystems (compare with example in [G&L, Ch.1]).

The transmission zeros are given by the roots of

1 1 2 1-s
detP(s)iS—&-l(s+lis+3)7 (s+1)%(s+3)

RHP zero in 1 =- cannot robustly control the system with a crossover
frequency larger than 1.

Rosenbrock’s example with two SISO controllers

> U= (14 1) (R - 71)
> Up = —K»Y3 with K> = 0, 0.8, and 1.6.

0 2 4 6 8 10 12 14 16 18 20

The second controller has a major impact on the first loop! Gain
reversal in u; — y; when Ko = 1.6.

Bristol’s relative gain array (RGA)

» Edgar H. Bristol, "On a new measure of interaction for
multivariable process control" [[EEE TAC 11(1967) pp. 133—135]

» A simple way of measuring interaction in MIMO systems

» Idea: Study how the gain between one input and one output
changes when all other outputs are regulated:

open-loop gain

relative gain = ———
9 closed-loop gain

» Often only the static gain P(0) is analyzed, but one could also
look at for instance P(iw,)

Calculation of RGA

Assume a square MIMO system with input-output relation y = Gu.
Open loop: Assume u; # 0 and all other inputs zero. This gives
y = Gyjuy

Output & is given by
Yk = Grju;

Closed loop: Assume y;. # 0 and that all other outputs are regulated
to zero. Solving for the corresponding inputs gives

-1
u= G*k Yk

Input j is given by

1

-1

uj = ij Ye <& Y= 7Y
ik

Calculation of RGA

Ratio of open-loop and closed-loop gain:

Mij = Gy - Gyl

All elements of the relative gain array (matrix) can be computed as
A =RGA(G) =G+ (GHT

where .x denotes element-wise (Hadamard/Schur) multiplication

Matlab: RGA = G.*inv(G).’

Properties and interpretation of RGA

» RGA is dimensionless; not affected by choice of units or scaling.
» RGA is normalized: Rows and columns of A sumto 1.
» Diagonal or triangular plant gives A = I

Interpretation:

> Arj ~ 1 means small closed-loop interaction. Suitable to pair
output k& with input j.

> Arj < 0 corresponds to a sign reversal due to feedback and a
risk of instability if output k is paired with input j — avoid!

> 0 < Ag;j < 1 means that the closed-loop gain is larger than the
open-loop gain; the opposite is true for Ay; > 1.

Recommendation: Pair the outputs and inputs so that corresponding
relative gains are positive and as close to 1 as possible.




RGA of Rosenbrock’s example

Analysis of static gain:

O ST

» Negative value of \1; indicates the problematic sign reversal
found previously when y; was controlled using u;.

» Better to use reverse pairing, i.e. let ua control y; and vice versa.

Rosenbrock’s example with reverse pairing

> Uy = (1+%)(R1 -Y1)
» U = — KoY, with K9 =0, 0.8, and 1.6.

RGA of non-square systems

The RGA can also be computed for a general gain matrix G:
RGA(G) = G .+ (GNT

Here, 1 denotes the pseudo-inverse (Matlab: pinv)

Example: Distillation column:

40 1.8 59 0.28 —-0.61 1.33
P(0) = [5.4 5.7 6.9]’ RGA(P(0)) = 0.01 1.58 —0.59

Suggested pairing for decentralized control: y1—us, y2—u2, w1 unused

Lecture 7 — Outline

4. Decoupling

Decoupling

Idea: Select decoupling filters 1¥; and W5 so that the controller sees a
diagonal plant:

P = WoPW; =

o O *
o x O
* O O

Then we can use a decentralized controller C' with the same diagonal
structure.

Decoupling

Many variants/names:

» Input/conventional/feedforward decoupling: P=PW, Wo=1
P=

» Output/inverse/feedback decoupling: WoP, Wy =1

Wy and W5 can be static or dynamic systems

Example: Static input decoupling: W7 = P~1(0), Wa =T

Lab 2: The quadruple tank
1—7

L-m

Pump 1 (BP, ump 2 (AP)

Uy U2

Summary

\4

All real systems are coupled
Multivariable RHP zeros =- limitations
» Don't forget process redesign
» Decentralized control — one controller per controlled variable
» RGA gives insight for input—output pairing
» Decoupling
Simpler system
SISO design, tuning and operation can be used

v

Next week: Centralized multivariable design using LQ/LQG




