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Lecture 8 – Outline

1. Transfer functions for MIMO systems

2. Limitations due to RHP zeros

3. Decentralized control

4. Decoupling

See “Lecture notes” and [G&L, Chapters 1, 7.7 (first part) and 8.3]

Typical process control system

Example system: Distillation column

Raw oil inserted at bottom; different petro-chemical subcomponents extracted

Example system: Distillation column

Outputs: Inputs:

y1 = top draw composition u1 = top draw flowrate

y2 = side draw composition u2 = side draw flowrate

u3 = bottom temperature control input

Linear first-order plus deadtime (FOPDT) model:

[
Y1(s)
Y2(s)

]
=




4
50s + 1e−27s 1.8

60s + 1e−28s 5.9
50s + 1e−27s

5.4
50s + 1e−18s 5.7

60s + 1e−14s 6.9
40s + 1e−15s




︸ ︷︷ ︸
P (s)




U1(s)
U2(s)
U3(s)



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Multivariable transfer functions
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P and C are matrices and all signals are vectors – order matters!

Z = PCR + PD − PC
(
N + Z

)

(
I + PC

)
Z = PCR + PD − PCN

Z =
(
I + PC

)−1
PC

︸ ︷︷ ︸
Gzr=T

R +
(
I + PC

)−1
P

︸ ︷︷ ︸
Gzd

D − (
I + PC

)−1
PC

︸ ︷︷ ︸
Gzn

N
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Sensitivity functions for MIMO systems

Output sensitivity function:

(I + PC)−1 = S

Input sensitivity function:

(I + CP )−1

Mini-problem:

Find the transfer functions above in the block diagram on the
previous slide.

Some useful math relations

Notice the following identities:

(i) [I + PC]−1P = P [I + CP ]−1

(ii) C[I + PC]−1 = [I + CP ]−1C

(iii) T = P [I + CP ]−1C = PC[I + PC]−1 = [I + PC]−1PC

(iv) S + T = I

Proof:

The first equality follows by multiplication on both sides with (I + PC) from
the left and with (I + CP ) from the right.

Left: [I + PC][I + PC]−1P [I + CP ] = I · [P + PCP ] = [I + PC]P
Right: [I + PC]P [I + CP ]−1[I + CP ] = [I + PC]P · I = [I + PC]P
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Hard limitations from RHP zeros

[G&L Theorem 7.9]

Assume that the MIMO system P (s) has a transmission zero z in the
RHP.

Let S(s) = [I + P (s)C(s)]−1 and let WS(s) be a scalar, stable and
minimum phase transfer function. Then the specification

‖WSS‖∞ = sup
ω

σ̄
(
WS(iω)S(iω)

) ≤ 1

is only possible to meet if

|WS(z)| ≤ 1

Example: Control of MIMO system with RHP zero

[G&L Example 1.1]

Process:

P (s) =
[

2
s+1

3
s+2

1
s+1

1
s+1

]

Computing the determinant

det P (s) = 2
(s + 1)2 − 3

(s + 2)(s + 1) = −s + 1
(s + 1)2(s + 2)

shows that the process has a RHP zero in 1, which will limit the
achievable performance.

[See lecture notes for details of the following slides]

Example – Controller 1

The controller

C1(s) =




K1(s+1)
s −3K2(s+0.5)

s(s+2)
−K1(s+1)

s
2K2(s+0.5)

s(s+1)




gives the diagonal loop transfer matrix

P (s)C1(s) =




K1(−s+1)
s(s+2) 0

0 K2(s+0.5)(−s+1)
s(s+1)(s+2)




The system is decoupled into two scalar loops, each with an unstable
zero at s = 1 that limits the bandwidth.

Closed-loop step responses from (r1, r2) to (y1, y2) for K1 = K2 = 1
are shown on next slide.

Step responses using Controller 1
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No cross-coupling, but RHP zero shows up in both y1 and y2.

Sensitivity sigma plot using Controller 1
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Example – Controller 2

The controller

C2(s) =
[

K1(s+1)
s K2

−K1(s+1)
s K2

]

gives the triangular loop transfer matrix

P (s)C2(s) =
[

K1(−s+1)
s(s+2)

K2(5s+7)
(s+2)(s+1)

0 2K2
s+1

]

Now the decoupling is only partial: Output y2 is not affected by r1.
Moreover, there is no RHP zero that limits the rate of response in y2!

The closed loop step responses for K1 = 1, K2 = 10 are shown on
next slide.

Step responses using Controller 2
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The RHP zero does not prevent a fast y2 response to r2 but at the price of a
simultaneous undesired response in y1.

Sensitivity sigma plot using Controller 2
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Example – Controller 3

The controller

C3(s) =


K1

−3K2(s+0.5)
s(s+2)

K1
2K2(s+0.5)

s(s+1)




gives the triangular loop transfer matrix

P (s)C3(s) =




K1(5s+7)
(s+1)(s+2) 0

2K1
s+1

K2(−1+s)(s+0.5)
s(s+1)2(s+2)




In this case y1 is decoupled from r2 and can respond arbitrarily fast for
high values of K1, at the expense of bad behavior in y2. Step
responses for K1 = 10, K2 = 1 are shown on next slide.

Step responses using Controller 3
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The RHP zero does not prevent a fast y1 response to r1 but at the price of a
simultaneous undesired response in y2.

Sensitivity sigma plot using Controller 3
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Example – summary

To summarize, the example shows that even though a multivariable
RHP zero always gives a performance limitation, it is possible to
influence where the effects should show up.
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Decentralized control

Background in process control:

◮ A few important variables were controlled using the simple loop
paradigm: one sensor, one actuator, one controller

◮ As more loops were added, interaction was handled using
feedforward, cascade and midrange control, selectors, etc.

◮ Not always obvious how to associate sensors and actuators – the
pairing problem

Computer control and state-space design methods eventually led to
centralized MIMO control schemes (LQG, MPC, etc.)

Interaction between simple loops

r1

r2

u1

u2

y1

y2

C1

C2

Process

Y1(s) = P11(s)U1(s) + P12U2(s)
Y2(s) = P21(s)U1(s) + P22U2(s),

What happens when the controllers are tuned individually (C1 for P11
and C2 for P22), ignoring the cross-couplings?

Rosenbrock’s example

P (s) =




1
s + 1

2
s + 3

1
s + 1

1
s + 1




Very benign subsystems (compare with example in [G&L, Ch.1]).

The transmission zeros are given by the roots of

det P (s) = 1
s + 1

( 1
s + 1 − 2

s + 3
)

= 1 − s

(s + 1)2(s + 3)

RHP zero in 1 ⇒ cannot robustly control the system with a crossover
frequency larger than 1.

Rosenbrock’s example with two SISO controllers

◮ U1 =
(
1 + 1

s

)
(R1 − Y1)

◮ U2 = −K2Y2 with K2 = 0, 0.8, and 1.6.
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The second controller has a major impact on the first loop! Gain
reversal in u1 → y1 when K2 = 1.6.

Bristol’s relative gain array (RGA)

◮ Edgar H. Bristol, "On a new measure of interaction for
multivariable process control" [IEEE TAC 11(1967) pp. 133–135]

◮ A simple way of measuring interaction in MIMO systems

◮ Idea: Study how the gain between one input and one output
changes when all other outputs are regulated:

relative gain = open-loop gain
closed-loop gain

◮ Often only the static gain P (0) is analyzed, but one could also
look at for instance P (iωc)

Calculation of RGA

Assume a square MIMO system with input-output relation y = Gu.

Open loop: Assume uj 6= 0 and all other inputs zero. This gives

y = G∗juj

Output k is given by
yk = Gkjuj

Closed loop: Assume yk 6= 0 and that all other outputs are regulated
to zero. Solving for the corresponding inputs gives

u = G−1
∗k yk

Input j is given by

uj = G−1
jk yk ⇔ yk = 1

G−1
jk

uj

Calculation of RGA

Ratio of open-loop and closed-loop gain:

λkj = Gkj · G−1
jk

All elements of the relative gain array (matrix) can be computed as

Λ = RGA(G) = G .∗ (G−1)T

where .∗ denotes element-wise (Hadamard/Schur) multiplication

Matlab: RGA = G.*inv(G).’

Properties and interpretation of RGA

◮ RGA is dimensionless; not affected by choice of units or scaling.

◮ RGA is normalized: Rows and columns of Λ sum to 1.

◮ Diagonal or triangular plant gives Λ = I

Interpretation:

◮ λkj ≈ 1 means small closed-loop interaction. Suitable to pair
output k with input j.

◮ λkj < 0 corresponds to a sign reversal due to feedback and a
risk of instability if output k is paired with input j – avoid!

◮ 0 < λkj < 1 means that the closed-loop gain is larger than the
open-loop gain; the opposite is true for λkj > 1.

Recommendation: Pair the outputs and inputs so that corresponding
relative gains are positive and as close to 1 as possible.
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RGA of Rosenbrock’s example

Analysis of static gain:

P (0) =



1 2
1 1


 , P −1(0) =




−1 2
1 −1




Λ = P (0) .∗ (P −1(0))T =



−1 2
2 −1




◮ Negative value of λ11 indicates the problematic sign reversal
found previously when y1 was controlled using u1.

◮ Better to use reverse pairing, i.e. let u2 control y1 and vice versa.

Rosenbrock’s example with reverse pairing
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◮ U2 =
(
1 + 1

s

)
(R1 − Y1)

◮ U1 = −K2Y2 with K2 = 0, 0.8, and 1.6.

RGA of non-square systems

The RGA can also be computed for a general gain matrix G:

RGA(G) = G .∗ (
G†)T

Here, † denotes the pseudo-inverse (Matlab: pinv)

Example: Distillation column:

P (0) =



4.0 1.8 5.9
5.4 5.7 6.9


 , RGA(P (0)) =




0.28 −0.61 1.33
0.01 1.58 −0.59




Suggested pairing for decentralized control: y1–u3, y2–u2, u1 unused
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Decoupling

yẽ uũer
Σ W2 C W1 P

−1

Idea: Select decoupling filters W1 and W2 so that the controller sees a
diagonal plant:

P̃ = W2PW1 =




∗ 0 0
0 ∗ 0
0 0 ∗




Then we can use a decentralized controller C with the same diagonal
structure.

Decoupling

Many variants/names:

◮ Input/conventional/feedforward decoupling: P̃ = PW1, W2 = I

◮ Output/inverse/feedback decoupling: P̃ = W2P , W1 = I

W1 and W2 can be static or dynamic systems

Example: Static input decoupling: W1 = P −1(0), W2 = I

Lab 2: The quadruple tank

u1 u2

y1 y2

y3 y4

γ1

1 − γ1

γ2

1 − γ2

Tank 1
(A2)

Tank 2
(B2)

Tank 3
(A1)

Tank 4
(B1)

Pump 1 (BP) Pump 2 (AP)

Summary

◮ All real systems are coupled
◮ Multivariable RHP zeros ⇒ limitations

◮ Don’t forget process redesign
◮ Decentralized control – one controller per controlled variable

◮ RGA gives insight for input–output pairing
◮ Decoupling

Simpler system
SISO design, tuning and operation can be used

Next week: Centralized multivariable design using LQ/LQG
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