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Course Outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance

@ Controllability, observability, multivariable zeros
@ Fundamental limitations
© Multivariable and decentralized control

L9-L11 Controller optimization: Analytic approach
L12-L14 Controller optimization: Numerical approach
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Lecture 8 — Outline

0 Transfer functions for MIMO systems

Q Limitations due to RHP zeros

Q Decentralized control

Q Decoupling

See “Lecture notes” and [G&L, Chapters 1, 7.7 (first part) and 8.3]
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Typical process control system
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Xl ~Deprapanizer
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€ —Fresh Hydrofluoric
Acid from Tank Car

D —Water
E —Acid Ol
F —Steam
G —Propane

H — N-butane and Alkylate

AECYELEISORUTANE

Figure 13-6. Automatic control system for Perco moter fuel alkylation process.
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Example system: Distillation column

Outputs: Inputs:
11 = top draw composition  u; = top draw flowrate
1o = side draw composition wug = side draw flowrate

u3 = bottom temperature control input

Linear first-order plus deadtime (FOPDT) model:

4 1.8 5.9
6—275 6—288 6—275 Ul (8)
Yi(s) 50s + 1 60s + 1 50s + 1 Us(s)
- 2
Ya(s) 5.4 o185 5.7 o—1ds 6.9 o155 | [Uy(s)
50s + 1 60s + 1 40s + 1

P(s)
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Lecture 7 — Outline

o Transfer functions for MIMO systems
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Multivariable transfer functions

-1

P and C' are matrices and all signals are vectors — order matters!
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Multivariable transfer functions

-1

P and C' are matrices and all signals are vectors — order matters!
Z=PCR+PD - PC(N + 2)
(I +PC)Z=PCR+ PD — PCN
Z=(I+PC)"'PC R+ (I +PC)"'P D—(I+PC)"'PCN

Gzr:T sz Gzn
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Sensitivity functions for MIMO systems

Output sensitivity function:

(I+PC)yt=8
Input sensitivity function:

(I+cCp)7!
Mini-problem:

Find the transfer functions above in the block diagram on the
previous slide.
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Some useful math relations

Notice the following identities:
(i) [I +PC)"'P=P[I+CP]!
(i) C[I +PC|™' =[I+CP]"'C

(i13) T = [I+C’P] Ic=pC[I+PC|™' =[I+PC|tPC
v) S+

(i
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Some useful math relations

Notice the following identities:

(i) [I +PC)"'P=P[I+CP]!
(i) C[I +PC|™' =[I+CP]"'C
(iii) T = [I+C’P] Ic=pC[I+PC|™' =[I+PC|tPC
(iv) S+
Proof:

The first equality follows by multiplication on both sides with (I + PC') from
the left and with (1 + C'P) from the right.

Left: [I + PC|[I + PC|™*P[I + CP]=1-[P+ PCP] = [I + PC|P
Right: [I + PC|P[I + CP] '[I + CP]=[I + PC|P-I = [l + PC|P
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Lecture 7 — Outline

Q Limitations due to RHP zeros
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Hard limitations from RHP zeros

[G&L Theorem 7.9]

Assume that the MIMO system P(s) has a transmission zero z in the
RHP.

Let S(s) = [I + P(s)C(s)]~! and let Ws(s) be a scalar, stable and
minimum phase transfer function. Then the specification

[WsS|loo = sup a(Ws(iw)S(iw)) <1
w
is only possible to meet if

Ws(2)| <1
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Example: Control of MIMO system with RHP zero

[G&L Example 1.1]

Process:

s+1  s+1

2 3
P(S) — [sTl 8T2‘|

Computing the determinant

2 3 —s+1
det P(s) = e " G396 D) G612

shows that the process has a RHP zero in 1, which will limit the
achievable performance.

[See lecture notes for details of the following slides]
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Example — Controller 1

The controller

Ki(s+1) _ 3K>5(s+0.5)
Cl (S) = . Kfés—‘,—l) 2K2s((;-‘t02)5)
s s(s+1)

gives the diagonal loop transfer matrix

Ki(—s+1) 0
s(s+2
P()Ci(s) = | "% kyeroscsty
s(s+1)(s+2)

The system is decoupled into two scalar loops, each with an unstable
zero at s = 1 that limits the bandwidth.

Closed-loop step responses from (r1, r2) to (y1, y2) for K1 = Ko =1
are shown on next slide.
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Step Response

15 From: In(1) From: In(2)
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No cross-coupling, but RHP zero shows up in both y; and .
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Singular Values

Singular Values (abs)

Singular values

Wl
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Frequency (rad/s)
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Example — Controller 2

The controller

K1(5+1) K
CQ(S) = [_ Kls(s-‘rl) Kj|

gives the triangular loop transfer matrix

Ki(=st+1) _Ks(55+7)
P(s)Cq(s) = [ 5(552) (s+g) §+1)]
s+1

Now the decoupling is only partial: Output ¥ is not affected by r;.
Moreover, there is no RHP zero that limits the rate of response in y-!

The closed loop step responses for K1 = 1, K5 = 10 are shown on
next slide.
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Step responses using Controller 2

Step Response

From: In(1) From: In(2)

To: Out(1)

(0]
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The RHP zero does not prevent a fast y5 response to 5 but at the price of a

simultaneous undesired response in y .
le Control, Lecture 8
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Ws(S)

Singular Values (abs)

—— Singular values
N ‘Wﬁl‘

_ s+1
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Frequency (rad/s)

, impossible to meet due to RHP zero
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Example — Controller 3

The controller

—3K5(s+0.5)
Cols) = | KT 7 s
Ky 2R

gives the triangular loop transfer matrix

K1(5547) 0
s+1)(s+2
P(s)C3(s) = ( +2}§1+ ) Ka(—1+s)(s+0.5)
s+1 s(s+1)2(s+2)

In this case vy, is decoupled from 79 and can respond arbitrarily fast for
high values of K1, at the expense of bad behavior in 5. Step
responses for K1 = 10, Ko = 1 are shown on next slide.
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Step responses using Controller 3

Step Response

From: In(1) From: In(2)

To: Out(1)
o
(9]
—

Amplitude
o

To: Out(2)

0 2 4 6 80 2 4 6 8

Time (seconds)
The RHP zero does not prevent a fast y; response to r; but at the price of a
simultaneous undesired response in ys.

le Control, Lecture 8
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Singular Values
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Example — summary

To summarize, the example shows that even though a multivariable
RHP zero always gives a performance limitation, it is possible to
influence where the effects should show up.
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Lecture 7 — Outline

Q Decentralized control
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Decentralized control

Background in process control:

@ A few important variables were controlled using the simple loop
paradigm: one sensor, one actuator, one controller

@ As more loops were added, interaction was handled using
feedforward, cascade and midrange control, selectors, etc.

@ Not always obvious how to associate sensors and actuators — the
pairing problem

Computer control and state-space design methods eventually led to
centralized MIMO control schemes (LQG, MPC, etc.)
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Interaction between simple loops

L —

Cl -

\j

Y1

T —

Process

79 —p Uz

-

Yl(S) = Pu(S)Ul(S) + P12U2(S)
Ya(s) = Po1(s)Ui(s) + PaUs(s),

What happens when the controllers are tuned individually (C; for Piy
and Cs for P»s), ignoring the cross-couplings?
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Rosenbrock’s example

1 2
s+1 s+3

P(s) = ) )
s+1 s+1

Very benign subsystems (compare with example in [G&L, Ch.1]).

The transmission zeros are given by the roots of

1 1 2 1—s
det P(s) = — =
et P(s) s—l—l(s—i—l s+3) (s +1)%(s+3)

RHP zero in 1 = cannot robustly control the system with a crossover
frequency larger than 1.
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Rosenbrock’s example with two SISO controllers

o U = (1 + %)(R1 - Y1)
@ Uy = —KyY5 with Ko = 0, 0.8, and 1.6.

0 2 4 6 8 10 12 14 16 18 20

The second controller has a major impact on the first loop! Gain
reversal in u; — y; when Ko = 1.6.
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Bristol’s relative gain array (RGA)

@ Edgar H. Bristol, "On a new measure of interaction for
multivariable process control" [[EEE TAC 11(1967) pp. 133—135]
@ A simple way of measuring interaction in MIMO systems

@ |dea: Study how the gain between one input and one output
changes when all other outputs are regulated:

open-loop gain

relative gain = —
closed-loop gain

@ Often only the static gain P(0) is analyzed, but one could also
look at for instance P (iw.)
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Calculation of RGA

Assume a square MIMO system with input-output relation y = Gu.

Open loop: Assume u; # 0 and all other inputs zero. This gives
y = Guju;

Output £ is given by
Yk = Grju;

Closed loop: Assume ¥, # 0 and that all other outputs are regulated
to zero. Solving for the corresponding inputs gives

U= G*_klyk
Input j is given by
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Calculation of RGA

Ratio of open-loop and closed-loop gain:

Akj = Gy - G

All elements of the relative gain array (matrix) can be computed as
A =RGA(G) =G (G HT

where .x denotes element-wise (Hadamard/Schur) multiplication

Matlab: RGA = G.*inv(G) .’
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Properties and interpretation of RGA

@ RGA is dimensionless; not affected by choice of units or scaling.
@ RGA is normalized: Rows and columns of A sum to 1.
@ Diagonal or triangular plant gives A = I
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Properties and interpretation of RGA

@ RGA is dimensionless; not affected by choice of units or scaling.
@ RGA is normalized: Rows and columns of A sum to 1.
@ Diagonal or triangular plant gives A = I

Interpretation:

@ )\;; ~ 1 means small closed-loop interaction. Suitable to pair
output k£ with input j.

@ \i; < 0 corresponds to a sign reversal due to feedback and a
risk of instability if output & is paired with input j — avoid!

@ 0 < Ag; < 1 means that the closed-loop gain is larger than the
open-loop gain; the opposite is true for Ay; > 1.
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Properties and interpretation of RGA

@ RGA is dimensionless; not affected by choice of units or scaling.
@ RGA is normalized: Rows and columns of A sum to 1.
@ Diagonal or triangular plant gives A = I

Interpretation:

@ )\;; ~ 1 means small closed-loop interaction. Suitable to pair
output k£ with input j.

@ \i; < 0 corresponds to a sign reversal due to feedback and a
risk of instability if output & is paired with input j — avoid!

@ 0 < Ag; < 1 means that the closed-loop gain is larger than the
open-loop gain; the opposite is true for Ay; > 1.

Recommendation: Pair the outputs and inputs so that corresponding
relative gains are positive and as close to 1 as possible.
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RGA of Rosenbrock’s example

Analysis of static gain:

@ Negative value of \1; indicates the problematic sign reversal
found previously when y; was controlled using ;.

@ Better to use reverse pairing, i.e. let uy control y; and vice versa.
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Rosenbrock’s example with reverse pairing

iL
Sosl i
OO é 4‘1 é é 1‘0 1‘2 1‘4 1‘6 1‘8 20
.
Slost
00 é 1‘1 é i; 1‘0 1‘2 1‘4 1‘6 1‘8 20
o U= (1+1) (R - 1)
@ Uy = —KsYs with Ko = 0, 0.8, and 1.6.
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RGA of non-square systems

The RGA can also be computed for a general gain matrix G-
RGA(G) = G .« (GHT

Here, 1 denotes the pseudo-inverse (Matlab: pinv)
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RGA of non-square systems

The RGA can also be computed for a general gain matrix G-
RGA(G) = G .« (GHT

Here, 1 denotes the pseudo-inverse (Matlab: pinv)

Example: Distillation column:

4.0 1.8 5.9 0.28 —-0.61 1.33
P(0) = [5.4 5.7 6.9]’ RGA(P(0)) = 0.01 1.58 —0.59

Suggested pairing for decentralized control: y1—u3, y2—u2, u1 unused
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Lecture 7 — Outline

Q Decoupling
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Decoupling

r e e u )
W2_6>C_U>W1_U>P
-1
L1

Idea: Select decoupling filters W1 and W5 so that the controller sees a
diagonal plant:

P =WyPW; =

o O ¥
o x O
* O O

Then we can use a decentralized controller C with the same diagonal
structure.
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Decoupling

Many variants/names:

@ Input/conventional/feedforward decoupling

:P=PWy, Wo=1
@ Output/inverse/feedback decoupling: P=

WoP, Wy =1

W1 and W5 can be static or dynamic systems

Example: Static input decoupling: W7 = P=1(0), Wy =1
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Lab 2: The quadruple tank

1—
L=—m 72
I I
Tank 3 Tank 4
(A1) (B1)
Y3 Ya
:I% 4! Y2 XE
Tank 1 Tank 2
(82) 144 (B2)

Pump 1 (B%

u1

Y2 @ump 2 (AP)

Uz
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Summary

@ All real systems are coupled

@ Multivariable RHP zeros =- limitations
o Don't forget process redesign

@ Decentralized control — one controller per controlled variable
o RGA gives insight for input—output pairing

@ Decoupling

Simpler system
SISO design, tuning and operation can be used

Next week: Centralized multivariable design using LQ/LQG
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