FRTN10 Multivariable Control, Lecture 7

Automatic Control LTH, 2017

Course Outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance
6. Controllability, observability, multivariable zeros
7. Fundamental limitations
8. Multivariable and decentralized control

L9-L11 Controller optimization: Analytic approach
L12-L14 Controller optimization: Numerical approach
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Limitations in control design

1. Bode’s Relation and Bode’s Integral Theorem
2. Limitations from unstable poles, RHP zeros and delays: Intuition

3. Limitations from unstable poles and RHP zeros: Hard proofs

[Glad & Ljung: 7.2-7.9]

What we already know:

» Model errors, measurement noise, control signal limitations =
upper limit on achievable bandwidth

» S+T=1 =
[S(iw)] + T (iw)| = 1

[1S(iw)| = T (iw)l| <1

» Some modes may be impossible to control or observe due to lack
of controllability or observability

Limitations in control design

Fundamental limitations:

» Bode’s Relation: amplitude and phase are coupled

» Bode’s Integral Theorem: |S(iw)| cannot be made small
everywhere

» Limitations from unstable poles

v

Limitations from right-half-plane (RHP) zeros

» Limitations from time delays

Lecture 7 — Outline

1. Bode’s Relation and Bode’s Integral Theorem

Recall: Loop shaping design

The loop transfer function L = PC' should be made large at low
frequencies and small at high frequencies:
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Disturbance rejection
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How quickly can we make the transition from high to low gain and still
retain a good phase margin?

Bode’s Relation — approximate version

If G(s) is rational and stable with no RHP zeros, then

o mdlog|G(iw)]
arg G(iw) ~ 2 dlogw

(Otherwise the phase is smaller — non-minimum phase)

Consequence:

To have 30°—60° phase margin, the downward slope of the amplitude
curve should be approximately between 1.3 and 1.7 at the crossover
frequency.




Bode’s Relation — exact version

If G(s) is rational and stable with no RHP zeros, then

Bode’s Integral Theorem — stable case

arg G iwg) = % /00 log |G(iw)] = log |G(iw0)|dw
7 Jo w? — w% For a stable system with loop gain with relative degree > 2 the
1 [ dlog|G(iw)| w + wo following conservation law for the sensitivity function holds:
=— log ‘ ‘ dlogw
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Example Bode’s Integral Theorem — general case

P-control of (s +s+1)7!
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For a system with loop gain with relative degree > 2 and unstable
poles p1, ..., pu, the following conservation law for the sensitivity
function holds:

M

/Ooo log | S (iw)|dw = ﬂERe(pi)

i=1

(See G&L Theorem 7.3 for details)

A similar condition relating 7" and RHP zeros exists, see G&L
Theorem 7.5)

G. Stein: "Conservation of dirt!"

Serious Design s.g
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Figure 3. Sensitivity reduction at low frequency unavoidably
leads to sensitivity increase at higher frequencies.

Picture from Gunter Stein’s Bode Lecture (1985) “Respect the unstable”.
Reprint in IEEE Control Systems Magazine, Aug 2003.
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2. Limitations from unstable poles, RHP zeros and delays: Intuition

Unstable poles — intuitive reasoning

An unstable pole p makes the output signal grow exponentially
as ~ eP* for a bounded input. To stabilize this system, one has to act
fast, on a time scale ~ 1/p.

Conclusion: An unstable pole p gives a lower bound on the speed of
the closed loop. The cross-over frequency has to fulfill

WeZ P

RHP zeros - intuitive reasoning

The step response of a system with a right-half-plane zero has an
undershoot. The effect is more severe if the zero is close to the origin.

Step Response of (s-z)/(sz+s+1)

Amplitude
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Conclusion: A RHP zero z gives an upper bound on the speed of the
closed loop. The cross-over frequency has to fulfill w,. < 2.

~




Time delays - intuitive reasoning

Assume that the system contains a time-delay 7. This means a
disturbance is not visible in the output signal until after at least 7" time
units. This puts a hard constraint on how quickly a feedback controller
can reject the disturbance!

Conclusion: A time delay 71" give an upper bound on the speed of the
closed loop. The cross-over frequency has to fulfill

1
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Bike example

A (linearized) torque balance can be written as
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420 mVol 8
Jﬁ = mglh + (Vbﬁ + aE)

Bike example, cont’d

2
J% = mglf + mz/gl <VOB + a%)
where the physical parameters have typical values as follows:

Mass: m = 70 kg
Distance rear-to-center: a=03m
Height over ground: {=12m
Distance center-to-front: b=0.7m
Moment of inertia: J =120 kgm®
Speed: Vo=5 mst
Acceleration of gravity: g=9.81ms?

The transfer function from 3 to 0 is

mVol as+ Vp

P(s) = _—
(5) b Jsz2—mgl

Bike example, cont’d

The system has an unstable pole p with time-constant

[ J
1= /= =~04
P gl 0.4s

The closed loop system must be at least as fast as this. Moreover, the
transfer function has a zero z with
4_ a __ 03m

W W

z

For the back-wheel steered bike we have the same poles but different
sign of V4 and the zero will thus be in the RHP!

An unstable pole-zero cancellation occurs for V) ~ 0.75 m/s.
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3. Limitations from unstable poles and RHP zeros: Hard proofs

Sensitivity bounds from unstable poles/RHP zeros

The sensitivity function must be 1 at a RHP zero z:

P(z)=0 = S(z)=——F—~7—~=1

Similarly, the complementary sensitivity function must be 1 at an
unstable pole p:

_ _ _P)ICH
P(p) =00 = T(p) SR POICH)

The Maximum Modulus Theorem

Suppose that all poles of the rational function G(s) have negative real
part. Then

sup |G(s)| = sup |G (iw)|
Re s>0 weR

Consequences of the Maximum Modulus Theorem

Consequence for system with RHP zero z:

M, =sup |S(iw)| = sup |S(s)| > |S(z)| =1
w Re s>0

More interesting to use a weighting function:

sup [Ws(iw) S(iw)| = sup [Ws(s)S(s)| 2 [Ws(2)]

Similar calculations can be done relating unstable poles and 7'(s).




Consequences of the Maximum Modulus Theorem

Assume that Wg(s) and Wr(s) are stable transfer functions. Then we
have the following necessary conditions:

» The specification
[WsSlloo < 1

is only possible to meet if |Ws(z;)| < 1 for all RHP zeros z;

» The specification
[WrTo < 1

is only possible to meet if |Wp(p;)| < 1 for all unstable poles p;

Example: Hard limitation from RHP zero

Assume the sensitivity specification Wg = 5;—5‘1 a>0.

If the plant has a RHP zero in z, then the specification possible to

meet only if
zta

2z

<1l & a<z

Example: Hard limitation from unstable pole

v P _ s+b
Assume the complementary sensitivity specification W = *53>, 6 > 0

If the plant has an unstable pole p, then the specification is possible to
meet only if

p+b
o<1 e b>
2% = =p

RHP zero and unstable pole

For a system with both RHP zero z and unstable pole p it can be
shown that

M = sup |S(iw)| >
w zZ—Dp

z+p‘

(See lecture notes for details)

If p = z the sensitivity function must have a high peak for every
controller C'.

Example: Bicycle with rear wheel steering

6(s) _ amtVy (=s+Vo/a)

8(s) bJ  (s2—mgtl/J)

=

Lecture 7 — summary
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Bode’s Relation and Bode’s Integral Formula

» Limitations from unstable poles, RHP zeros and time delays
> Intuition
> Rules of thumb for achievable w,.

» Limitations from unstable poles/zeros: Hard proofs using
Maximum Modulus Theorem

» A back-wheel steered bicyle — pole and zero i RHP




