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Course Outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance

@ Controllability, observability, multivariable zeros
@ Fundamental limitations
@ Multivariable and decentralized control

L9-L11 Controller optimization: Analytic approach
L12-L14 Controller optimization: Numerical approach
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Lecture 7 — Outline

0 Bode’s Relation and Bode’s Integral Theorem
Q Limitations from unstable poles, RHP zeros and delays: Intuition

Q Limitations from unstable poles and RHP zeros: Hard proofs

[Glad & Ljung: 7.2-7.9]
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Limitations in control design

What we already know:

@ Model errors, measurement noise, control signal limitations =
upper limit on achievable bandwidth

e5+T=1=
1S (iw)| + |T(iw)| > 1
[15(iw)| = |T(iw)]| < 1
@ Some modes may be impossible to control or observe due to lack
of controllability or observability
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Limitations in control design

Fundamental limitations:

©

Bode’s Relation: amplitude and phase are coupled

©

Bode’s Integral Theorem: |S(iw)| cannot be made small
everywhere

©

Limitations from unstable poles

©

Limitations from right-half-plane (RHP) zeros

©

Limitations from time delays
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Lecture 7 — Outline

0 Bode’s Relation and Bode’s Integral Theorem
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Recall: Loop shaping design

The loop transfer function L. = PC' should be made large at low
frequencies and small at high frequencies:

N
P(m)C(m}\

x Fréquency o

Disturbance rejection

tude

59

Robustness

50
60

How quickly can we make the transition from high to low gain and still
retain a good phase margin?
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Bode’s Relation — approximate version

If G(s) is rational and stable with no RHP zeros, then

m dlog |G(iw)|

arg G(iw) ~ 5 dioge

(Otherwise the phase is smaller — non-minimum phase)

Consequence:

To have 30°—60° phase margin, the downward slope of the amplitude
curve should be approximately between 1.3 and 1.7 at the crossover
frequency.
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Bode’s Relation — exact version

If G(s) is rational and stable with no RHP zeros, then
> log |G(iw)| — log |G (iwp)|
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Bode’s Integral Theorem — stable case

For a stable system with loop gain with relative degree > 2 the
following conservation law for the sensitivity function holds:

/ log | S (iw)|dw = 0
0

(Sometimes known as the "waterbed effect")
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Bode’s Integral Theorem — general case

For a system with loop gain with relative degree > 2 and unstable
poles p1, ..., pu, the following conservation law for the sensitivity
function holds:

0o M
/0 log |S (i) |dw = 3 Re(ps)

=1

(See G&L Theorem 7.3 for details)

A similar condition relating 7" and RHP zeros exists, see G&L
Theorem 7.5)
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G. Stein: "Conservation of dirt!"

Serious Design sg
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Figure 3. Sensitivity reduction at low frequency unavoidably
leads to sensitivity increase at higher frequencies.

»

Picture from Gunter Stein’s Bode Lecture (1985) “Respect the unstable”.
Reprint in IEEE Control Systems Magazine, Aug 2003.
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Lecture 7 — Outline

Q Limitations from unstable poles, RHP zeros and delays: Intuition
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Unstable poles - intuitive reasoning

An unstable pole p makes the output signal grow exponentially
as ~ eP! for a bounded input. To stabilize this system, one has to act
fast, on a time scale ~ 1/p.

Conclusion: An unstable pole p gives a lower bound on the speed of
the closed loop. The cross-over frequency has to fulfill

We 2P
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RHP zeros - intuitive reasoning

The step response of a system with a right-half-plane zero has an
undershoot. The effect is more severe if the zero is close to the origin.

Step Response of (s-z)/(sz+s+1)

N
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Conclusion: A RHP zero z gives an upper bound on the speed of the

closed loop. The cross-over frequency has to fulfill w, < z.
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Time delays - intuitive reasoning

Assume that the system contains a time-delay T". This means a
disturbance is not visible in the output signal until after at least 7" time
units. This puts a hard constraint on how quickly a feedback controller
can reject the disturbance!

Conclusion: A time delay T give an upper bound on the speed of the
closed loop. The cross-over frequency has to fulfill

1

WCST
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Bike example

A (linearized) torque balance can be written as
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Bike example, cont’d

2
JLH = mglf + mVof (‘/05 +adﬁ>

dt? b dt
where the physical parameters have typical values as follows:

Mass: m = 70 kg
Distance rear-to-center: a=03m
Height over ground: {=12m
Distance center-to-front: b=0.7m
Moment of inertia: J =120 kgm2
Speed: Vo =5ms*
Acceleration of gravity: g=9.8lms >

The transfer function from S to @ is
mVpl as+ Vy
b Js2—mgl

P(s) =
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Bike example, cont’d

The system has an unstable pole p with time-constant

p = i ~04s
mgl

The closed loop system must be at least as fast as this. Moreover, the
transfer function has a zero z with

Z—l__iN_O‘?’m
T W W

For the back-wheel steered bike we have the same poles but different
sign of Vj and the zero will thus be in the RHP!

An unstable pole-zero cancellation occurs for Vy ~ 0.75 m/s.
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Lecture 7 — Outline

Q Limitations from unstable poles and RHP zeros: Hard proofs
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nsitivity bounds from unstable poles/RHP zeros

The sensitivity function must be 1 at a RHP zero z:

1

T 1+ P(2)C(2)
g

P(z)=0 = S(z): =1

Similarly, the complementary sensitivity function must be 1 at an
unstable pole p:

Pp)=00 = T(p)= 20

T PGICE)
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The Maximum Modulus Theorem

Suppose that all poles of the rational function G(s) have negative real
part. Then

sup |G(s)] = sup |G(iw)|
Re s>0 weR
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nsequences of the Maximum Modulus Theorem

Consequence for system with RHP zero z:

M —sup|S(zw)|— sup |S(s)| > 1S(z)| =

Re s>0

More interesting to use a weighting function:

sup [ W (iw)S(iw)] = sup [Ws()S(s)] > [Ws(2)

Similar calculations can be done relating unstable poles and T'(s).
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nsequences of the Maximum Modulus Theorem

Assume that Wg(s) and Wy (s) are stable transfer functions. Then we
have the following necessary conditions:

@ The specification
”WSSHOO <1

is only possible to meet if [IWg(z;)| < 1 for all RHP zeros z;

@ The specification
HWTTHOO <1

is only possible to meet if |Wr(p;)| < 1 for all unstable poles p;
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Example: Hard limitation from RHP zero

Assume the sensitivity specification Wg = 3;:, a > 0.

If the plant has a RHP zero in z, then the specification possible to
meet only if
Z+a

2z

<1 & a<z
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Example: Hard limitation from unstable pole

Assume the complementary sensitivity specification W = SQ—? b>0

If the plant has an unstable pole p, then the specification is possible to
meet only if
ptb_

b>
o =t & bzp
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RHP zero and unstable pole

For a system with both RHP zero z and unstable pole p it can be
shown that

) z+
Mg = sup |S(iw)| > ‘p‘
w Z—Dp
(See lecture notes for details)
If p &~ 2 the sensitivity function must have a high peak for every
controller C.

Example: Bicycle with rear wheel steering

0(s) _amlVy (—s+Vo/a)
i(s) bJ  (s2—mgl/J)
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Lecture 7 — summary

@ Bode’s Relation and Bode’s Integral Formula

@ Limitations from unstable poles, RHP zeros and time delays

@ Intuition
@ Rules of thumb for achievable w,.

@ Limitations from unstable poles/zeros: Hard proofs using
Maximum Modulus Theorem

@ A back-wheel steered bicyle — pole and zero i RHP
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