
FRTN10 Multivariable Control, Lecture 6

Automatic Control LTH, 2017

Automatic Control LTH, 2017 FRTN10 Multivariable Control, Lecture 6



Course Outline

L1-L5 Specifications, models and loop-shaping by hand

L6-L8 Limitations on achievable performance

6 Controllability/observability, multivariable

poles/zeros, realizations
7 Fundamental limitations
8 Multivariable and decentralized control

L9-L11 Controller optimization: Analytic approach

L12-L14 Controller optimization: Numerical approach
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Lecture 6 – Outline

1 Controllability and observability, Gramians

2 Multivariable poles and zeros

3 Minimal realizations

[Glad & Ljung] Ch. 3.2–3.3, beg. of 3.5; Lecture notes on course web page

Automatic Control LTH, 2017 FRTN10 Multivariable Control, Lecture 6



Example: Ball in the Hoop

input ω

output θ

θ̈ + cθ̇ + kθ = ω̇

Can you reach θ = π/4, θ̇ = 0? Can you stay there?

Automatic Control LTH, 2017 FRTN10 Multivariable Control, Lecture 6



Example: Two water tanks

u1u1

u2 u2x1

x1

x2

ax2 a ≥ 1

ẋ1 = −x1 + u1 y1 = x1 + u2

ẋ2 = −ax2 + u1 y2 = ax2 + u2

Can you reach y1 = 1, y2 = 2? Can you stay there?
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Review: State feedback and controllability

Process

{

ẋ = Ax + Bu

y = Cx

State-feedback control

u = − Lx + lrr

Closed-loop system

{

ẋ = (A − BL)x + Blrr

y = Cx

r
lr +

u
ẋ = Ax + Bu

y = Cx

x
−L

If the system (A, B) is controllable then we can place the eigenvalues of

(A − BL) wherever we want
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Review: State observers and observability

Process

{

ẋ = Ax + Bu

y = Cx

Observer (“Kalman filter”)

˙̂x = Ax̂ + Bu + K(y − Cx̂)

Estimation/observer error x̃ = x − x̂:

˙̃x = (A − KC)x̃

If the system (A, C) is observable then we can place the eigenvalues

of (A − KC) wherever we want
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Controllability – definition

The system

ẋ = Ax + Bu

is controllable , if for every x1 ∈ R
n there exists u(t), t ∈ [0, t1],

such that x(t1) = x1 can be reached from x(0) = 0.

The collection of vectors x1 that can be reached in this way is called

the controllable subspace.

(Matlab: orth(ctrb(A,B)))
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Controllability criteria

The following controllability criteria for a system ẋ = Ax + Bu of

order n are equivalent:

(i) rank [B AB . . . An−1B] = n

(ii) rank [λI − A B] = n for all λ ∈ C

If the system is exponentially stable, define the controllability

Gramian

S =

∫
∞

0
eAtBBT eAT tdt

For such systems there is a third equivalent criterion:

(iii) The controllability Gramian is non-singular
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Interpretation of the controllability Gramian

The controllability Gramian measures how difficult it is to reach a

certain state.

In fact, in order to reach x = x1 starting from x = 0 it is necessary that

∫
∞

0
|u(t)|2dt ≥ xT

1 S−1x1

(For details, see the lecture notes.)
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Computing the controllability Gramian

The controllability Gramian S =
∫

∞

0 eAtBBT eAT tdt can be computed

by solving the Lyapunov equation

AS + SAT + BBT = 0

(For proof, see the lecture notes.)

Matlab: S = lyap(A,B*B’)

Q: Where have we seen this equation before?
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Example: Two water tanks

u1u1

u2 u2x1

x1

x2

ax2

ẋ1 = −x1 + u1 ẋ2 = −ax2 + u1

Controllability Gramian: S =

∫
∞

0

[
e−t

e−at

] [
e−t

e−at

]T

dt =

[ 1
2

1
a+1

1
a+1

1
2a

]

S close to singular when a ≈ 1. Interpretation?
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Example cont’d

Matlab:

>> a = 1.25; A = [-1 0; 0 -1*a]; B = [1; 1];

>> Ws= [B A*B], rank(Ws)

Ws =

1.0000 -1.0000

1.0000 -1.2500

ans =

2

>> S = lyap(A,B*B’)

S =

0.5000 0.4444

0.4444 0.4000

>> invS = inv(S)

invS =

162.0 -180.0

-180.0 202.5

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
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x
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x
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    [x
1
  x

2
] * inv(S) * [x

1
 ; x

2
] =1                             

Plot of
[
x1 x2

]
· S

−1

[
x1

x2

]

= 1

corresponds to the states we can reach by
∫

∞

0
|u(t)|2dt = 1.
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Observability – definition

The system

ẋ(t) = Ax(t)

y(t) = Cx(t)

is observable, if the initial state x(0) = x0 ∈ R
n can be uniquely

determined by the output y(t), t ∈ [0, t1].

The collection of vectors x0 that cannot be distinguished from x = 0 is

called the unobservable subspace.

(Matlab: null(obsv(A,C)))
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Observability criteria

The following observability criteria for a system ẋ(t) = Ax(t),

y(t) = Cx(t) of order n are equivalent:

(i) rank








C
CA

...

CAn−1








= n

(ii) rank

[

λI − A
C

]

= n for all λ ∈ C

If the system is exponentially stable, define the observability Gramian

O =

∫
∞

0
eAT tCT CeAtdt

For such systems there is a third equivalent statement:

(iii) The observability Gramian is non-singular
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Interpretation of the observability Gramian

The observability Gramian measures how difficult it is to distinguish an

initial state from zero by observing the output.

In fact, the influence of the initial state x(0) = x0 on the output y(t)
satisfies

∫
∞

0
|y(t)|2dt = xT

0 Ox0
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Computing the observability Gramian

The observability Gramian O =
∫

∞

0 eAT tCT CeAtdt can be computed

by solving the Lyapunov equation

AT O + OA + CT C = 0

Matlab: O = lyap(A’,C’*C)
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Mini-problem

Is the water tank system with a = 1 observable?

What if only y1 is available?
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Lecture 6 – Outline

1 Controllability and observability

2 Multivariable poles and zeros

3 Minimal realizations
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Poles and zeros

ẋ = Ax + Bu

y = Cx + Du

Y (s) = [C(sI − A)−1B + D]
︸ ︷︷ ︸

G(s)

U(s)

For scalar systems,

the points p ∈ C where G(p) = ∞ are called poles

the points z ∈ C where G(z) = 0 are called zeros
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Poles and zeros

For multivariable systems,

the points p ∈ C where any Gij(p) = ∞ are called poles

the points z ∈ C where G(z) loses rank are called

(transmission) zeros

Example:

G(s) =





2
s+1

3
s+2

1
s+1

1
s+1





Poles: −2 and −1 (but what about their multiplicity?)

Zeros: 1 (but how to find them?)
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Poles and zeros

For multivariable systems,

the points p ∈ C where any Gij(p) = ∞ are called poles

the points z ∈ C where G(z) loses rank are called

(transmission) zeros

Example:

G(s) =





2
s+1

3
s+2

1
s+1

1
s+1




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Pole and zero polynomials

The pole polynomial is the least common denominator of all

minors (sub-determinants) of G(s).

The zero polynomial is the greatest common divisor of the

maximal minors of G(s), normalized to the have the pole

polynomial as denominator.

The poles of G are the roots of the pole polynomial.

The (transmission) zeros of G are the roots of the zero polynomial.

Automatic Control LTH, 2017 FRTN10 Multivariable Control, Lecture 6



Poles and zeros – example

G(s) =





2
s+1

3
s+2

1
s+1

1
s+1





Poles: Minors: 2
s+1 , 3

s+2 , 1
s+1 , 1

s+1 , 2
(s+1)2 − 3

(s+1)(s+2) = −(s−1)
(s+1)2(s+2)

The least common denominator is (s + 1)2(s + 2), giving the poles

−2 (with multiplicity 1) and −1 (with multiplicity 2)

Zeros: Maximal minor:
−(s−1)

(s+1)2(s+2)
(already normalized)

The greatest common divisor is s − 1, giving the (transmission) zero 1
(with multiplicity 1)
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Poles and zeros – example

G(s) =





2
s+1

3
s+2

1
s+1

1
s+1





Poles: Minors: 2
s+1 , 3

s+2 , 1
s+1 , 1

s+1 , 2
(s+1)2 − 3
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(s+1)2(s+2)

The least common denominator is (s + 1)2(s + 2), giving the poles

−2 (with multiplicity 1) and −1 (with multiplicity 2)

Zeros: Maximal minor:
−(s−1)

(s+1)2(s+2)
(already normalized)

The greatest common divisor is s − 1, giving the (transmission) zero 1
(with multiplicity 1)
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Poles and zeros – example

G(s) =





2
s+1

3
s+2

1
s+1

1
s+1




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s+1 , 3

s+2 , 1
s+1 , 1
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The greatest common divisor is s − 1, giving the (transmission) zero 1
(with multiplicity 1)
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Interpretation of poles and zeros

Poles:

A pole s = a is associated with the state response x(t) = x0eat

A pole s = a is an eigenvalue of A

Zeros:

A zero s = a means that an input u(t) = u0eat is blocked

For a multivariable system, blocking occurs only in a certain input

direction

A zero describes how inputs and outputs couple to states
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Example: Ball in the Hoop

input ω

output θ

θ̈ + cθ̇ + kθ = ω̇

The transfer function from ω to θ is s
s2+cs+k

. The zero in s = 0 makes

it impossible to control the stationary position of the ball.

Zeros are not affected by feedback!
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Example: Two water tanks

replacements u1u1

u2 u2x1

x1

x2

2x2

ẋ1 = −x1 + u1 y1 = x1 + u2

ẋ2 = −2x2 + u1 y2 = 2x2 + u2

G(s) =

[
1

s+1 1
2

s+2 1

]

det G(s) =
−s

(s + 1)(s + 2)

The system has a zero in the origin! At stationarity y1 = y2.
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Plot singular values of G(iω) vs frequency

» s=tf(’s’)

» G=[1/(s+1) 1 ; 2/(s+2) 1]

» sigma(G) ; plot singular values

% Alt. for a certain frequency:

» w=1;

» A = freqresp(G,i*w);

» [U,S,V] = svd(A)
10
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s
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The largest singular value of G(iω) =

[
1

iω+1 1
2

iω+2 1

]

is fairly constant.

This is due to the second input. The first input makes it possible to

control the difference between the two tanks, but mainly near ω = 1
where the dynamics make a difference.
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Lecture 6 – Outline

1 Controllability and observability

2 Multivariable poles and zeros

3 Minimal realizations
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Minimal realization – definition

Given G(s), any state-space model (A, B, C, D) that is both

controllable and observable and has the same input–output behavior

as G(s) is called a minimal realization.

A transfer function with n poles (counting multiplicity) has a minimal

realization of order n.
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Realization in diagonal form

Consider a transfer function with partial fraction expansion

G(s) =
n∑

i=1

CiBi

s − pi
+ D

This has the realization

ẋ(t) =






p1I 0
. . .

0 pnI




 x(t) +






B1
...

Bn




 u(t)

y(t) =
[

C1 . . . Cn

]

x(t) + Du(t)

The rank of the matrix CiBi determines the necessary number of

columns in Bi and the multiplicity of the pole pi.

(Note: Matlab has no good command for doing this. Don’t use minreal.)
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Realization of multivariable system – example 1

To find a minimal realization for the system

G(s) =





2
s+1

3
s+2

1
s+1

1
s+1





with poles in −2 and −1 (double), write the transfer matrix as (e.g.)

G(s) =

[
2
1

]

[1 0]

s + 1
+

[
0
1

]

[0 1]

s + 1
+

[
3
0

]

[0 1]

s + 2

giving the realization

ẋ =





−1 0 0
0 −1 0
0 0 −2




x +





1 0
0 1
0 1




u

y =




2 0 3
1 1 0



 x
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Realization of multivariable system – example 2

To find state space-realization for the system

G(s) =

[
1

s+1
2

(s+1)(s+3)
6

(s+2)(s+4)
1

s+2

]

write the transfer matrix as

[ 1
s+1

1
s+1 − 1

s+3
3

s+2 − 3
s+4

1
s+2

]

=

[
1
0

]
[
1 1

]

s + 1
+

[
0
1

]
[
3 1

]

s + 2
+

[
1
0

]
[
0 −1

]

s + 3
+

[
0
1

]
[
−3 0

]

s + 4

This gives the realization







ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)







=







−1 0 0 0
0 −2 0 0
0 0 −3 0
0 0 0 −4













x1(t)
x2(t)
x3(t)
x4(t)







+







1 1
3 1
0 −1

−3 0







[
u1(t)
u2(t)

]

[
y1(t)
y2(t)

]

=

[
1 0 1 0
0 1 0 1

]

x(t)
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