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Course Outline

L1-L5 Specifications, models and loop-shaping by hand

1 Introduction
2 Stability and robustness
3 Specifications and disturbance models
4 Control synthesis in frequency domain
5 Case study

L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach

L12-L14 Controller optimization: Numerical approach
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Lecture 5 – Outline

1 Case study: Control of a DVD player

2 Review of cascade and midranging control
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Loop shaping

Controller synthesis via loop shaping: Shape the open loop gain

L = PC so that

[L] > |WS | for low frequencies (disturbance rejection)

|L| < |W −1
T | for high frequencies (robustness, att. of meas. noise)

good stability margins (ϕm, Am, Ms) are achieved

The controller C is typically composed of several factors:

gain

lag filters

lead filters

other filters (e.g., notch filter)
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Lecture 5 – Outline

1 Case study: Control of a DVD player
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Case Study: Control of a DVD player

The DVD player process

Problem formulation

Modeling

Specifications

Focus control loop shaping

Radial control (track following)

Based on work by Bo Lincoln
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The DVD player tracking problem

Scaled version of the control task in a DVD player:

Imagine that you are traveling at half the speed of light,

along a line from which you may only deviate 1 m

The line is not straight but oscillates up to 4.5 km sideways

up to 25 times per second

Good luck!
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The DVD player tracking problem

Pit

Track

0.74 µm

3.5 m/s speed along track

0.022 µm tracking tolerance

100 µm deviations at 10–25 Hz due

to asymmetric discs

DVD Digital Versatile Disc, 4.7–8.5 GB

CD Compact Disc, 650–800 MB

Blu-ray 25–400 GB
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Can you see the laser spot?
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The DVD Pick-Up Head

Pick−up head
Sledge

Disk
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Radial electromagnet

Focus electromagnet

Springs

Light detectors

Laser

A B

C D

Tracks

Lens

Automatic Control LTH, 2017 FRTN10 Multivariable Control, Lecture 5



Input-output diagram for DVD control

PUH & Disk

Vertical Force

Radial Force

Focus Error

Radial Error
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The four photo detectors

A B

C D

focus error = (A+D) – (B+C)

Note: There are no other sensors in the pick-up head to help keep the

laser in the track.
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Focus error signal

Too low Too high

Correct focus

Possible to see tracks

Focus Error

Lens height
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Radial error by push-pull

A B

C D

Pit

Look at

(A + C) − (B + D)
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Radial error by phase difference

A B

C D

Pit

f1

f2

Radial Error

f1 = A + D, f2 = B + C

Error signal RE created by time difference
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Radial error signals

DPD

PP

Radial position

1 track

Correct radial position

Note: Larger linear error region if using phase difference.
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Focus control design

F C P

−1

ΣΣΣ
r e u

d

z

n

y

What blocks and signals are relevant for focus control?

What disturbances are there?
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Focus process model

Model obtained using system identification:
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From DVD standard ECMA-267

http://www.ecma-international.org/publications/standards/Ecma-267.htm
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Specifications

Cancel disturbances due to disc asymmetry

|P (iω)C(iω)| ≥ 2000 for f ≤ 23 Hz

Robustness towards model errors, rejection of meas. noise

|P (iω)C(iω)| ≤ 1 for f > 2 kHz

Compare to the bit rate, which is in the order of 1 MHz)

Good stability margins
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Open-Loop System

Bode plot of P (s) with stability margins and specifications:
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Add Lag Compensator

Use lag filter with M = 15 to increase gain below 23 Hz. The break

point needs to be well below 2 kHz in order to avoid excessive phase

lag at the cross-over frequency: C(s) = KClag(s) = 0.4037(s+1885)
s+125.7
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Add Lead Compensator

Use lead filter with N = 12 to increase phase by 57◦ at cross-over

frequency. C(s) = KClag(s)Clead(s) = 1.398(s+1885)(s+3228)
(s+125.7)(s+43530)
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Add Another Lag Compensator

Low-frequency gain too low. Add another lag compensator with same

parameters: C(s) = KC2
lag(s)Clead(s) = 1.398(s+1885)2(s+3628)

(s+125.7)2(s+43530)
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Final Adjustments

Phase margin too small again. Lower the break frequency of the lag

filters to recover some phase:

C(s) = KC2
lag(s)Clead(s) = 1.397(s+1005)2(s+3628)

(s+67.02)2(s+43530)
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Final Controller

Bode diagram of final controller

C(s) = KC2
lag(s)Clead(s) = 1.397(s+1005)2(s+3628)

(s+67.02)2(s+43530)
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Gang of Four
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Response to impulse load disturbance
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Radial control

Make the laser follow the track by moving “sideways”/radially

It is essential to solve the Focus control problem first

Tracking via two parallel actuators (midranging):

Move lens (electromagnet/fast motion)

Move sledge (slow/large range)

Disturbances:

eccentricity (up to 100 tracks in one rotation)

physical vibrations of DVD player

noise, dirt, etc.
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Rotation center

Time

Track position

Track

Eccentricity

The disc is often a bit eccentric (i.e. not rotating around the track

center). The resulting track position, which the Pick-Up-Head has to

follow, is sinus-like.
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Experimental radial dynamics model

An estimated transfer function for the radial servo (from the control

signal u to the radial error RE)

Bode Diagram
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From DVD standard ECMA-267

Similar requirements as for the axial (focus) tracking

Many possible design methods (loop shaping, pole placement, LQG)

Automatic Control LTH, 2017 FRTN10 Multivariable Control, Lecture 5



Problem with sinusoidal output disturbance

The eccentricity causes problems (at about 10–25 Hz and magnitude

up to 100 tracks). Cannot be exactly modeled due to uncertainty.

+

Oscillation

−
+

−1

C P
u RE
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Stochastic disturbance modeling

+++
u

ev1

v2

P
RE

H

Noise model: There is both white process noise v1, and a track offset,

which is modeled as the white noise v2 through a filter H .

The filter H should have a high gain in the frequency range where the

oscillation acts (bandpass filter)

Kalman filter + state feedback then solves the problem elegantly
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Further reading

Lecture notes on course web page

"Sensing and Control in Optical Drives – How to Read Data from

a Clear Disc" by Amir H. Chaghajerdi, June 2008, IEEE Control

Systems Magazine, pp. 23–29,

http://www.ieeecss.org/CSM/library/2008/june08/11-June08ApplicationsOfControl.pdf
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1 Case study: Control of a DVD player
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Cascade control

For systems with one control signal and two (or more) outputs:

C2(s) C1(s) P2(s)P1(s)

−1

−1

u y1 y2r2 r1

ΣΣ

C1(s) controls the subsystem P1(s)

Fast inner loop, Gy1r1
(s) ≈ 1

C2(s) controls the subsystem P2(s)

Slow outer loop
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Midranging Control

Midranging is used for processes with two inputs and one output

Classical application: valve position control

Fast process input u1 (Example: fast but small-range valve)

Slow process input u2 (Example: slow but but large-range valve)

+

+

−

−

+

u1

u2

yyref

u1,ref

C1

C2

G1

G2

P

C2 acts on a much slower time-scale than C1

u1,ref should be set at the middle of u1’s operating range
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Midranging Control – Example

Radial control of pick-up-head of DVD player

Radial electromagnet

Focus electromagnet

Springs

Light detectors

Laser

A B

C D

Tracks

Lens

Pick−up head
Sledge

Disk

The pick-up-head has two electromagnets for fast positioning of the lens

(left). Larger radial movements are taken care of by the sledge (right).
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