
FRTN10 Multivariable Control, Lecture 3

Automatic Control LTH, 2017
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[Glad & Ljung] Ch. 5.1–5.6, 6.1–6.3

A basic control system
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Ingredients:

◮ Controller: feedback C, feedforward F

◮ Load disturbance d: drives the system from desired state

◮ Process: transfer function P

◮ Controlled process variable z should follow reference r

◮ Measurement noise n: corrupts information about z

A more general setting

Load disturbances need not enter at the process input, and
measurement noise and setpoint values may also enter in different
ways. More general setting:
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controller outputs u

controlled variables z

controller inputs y

exogenous signals w

We will return to this setting later in the course

Design specifications

Find a controller that

A: reduces the effect of load disturbances

B: does not inject too much measurement noise into the system

C: makes the closed loop insensitive to process variations

D: makes the output follow the setpoint

If possible, use a controller with two degrees of freedom (2 DOF), i.e.
separate signal transmission from y to u and from r to u. This gives a
nice separation of the design problem:

1. Design feedback to deal with A, B, and C

2. Design feedforward to deal with D

2-DOF Control Structures

A 2-DOF controller can be represented in many different ways, e.g.:

For linear systems, all of these structures are equivalent

Some systems only allow error feedback

Disk drive

Atomic Force Microscope

Only the control error can be measured

Design of disturbance attenuation and setpoint response cannot be
separated
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Relations between signals
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Z = P

1 + PC
D − PC

1 + PC
N + PCF

1 + PC
R

Y = P

1 + PC
D + 1

1 + PC
N + PCF

1 + PC
R

U = − PC

1 + PC
D − C

1 + PC
N + CF

1 + PC
R

The Gang of Four / Gang of SIx

Four transfer functions are needed to characterize the response to
load disturbances and measurement noise:

PC

1 + PC

P

1 + PC
C

1 + PC

1
1 + PC

Two more are required to describe the response to setpoint changes
(for 2-DOF controllers):

PCF

1 + PC

CF

1 + PC

Some observations

◮ To fully understand a control system it is necessary to look at all
four/six transfer functions

◮ It may be strongly misleading to show properties of only one or a
few transfer functions, for example only the response of the
output to command signals. (This is a common error.)

◮ The properties of the different transfer functions can be illustrated
by their frequency or time responses.

Example: Frequency Responses

PI control (K = 0.775, Ti = 2.05) of P (s) = (s + 1)−4 with
Gyr(s) = (0.5s + 1)−4. Gain curves:
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Example: Time Responses

PI control (K = 0.775, Ti = 2.05) of P (s) = (s + 1)−4 with
Gyr(s) = (0.5s + 1)−4. Step responses:
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Time responses – an alternative

Responses to setpoint change, step load disturbance and
measurement noise:
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Error feedback (dashed), 2-DOF controller (full)

One plot gives a good overview!

A warning

Remember to always look at all responses when you are dealing with
control systems. The step response below looks fine, but . . .
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Response of y to step in r

A warning – Gang of Four

Step responses:
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Unstable output response to load disturbance. What is going on?
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A warning – the system

Process P (s) = 1
s − 1

Controller C(s) = s − 1
s

Response of y to setpoint r

Gyr(s) = PC

1 + PC
= 1

s + 1

Response of y to step in disturbance d

Gyd(s) = P

1 + PC
= s

s2 − 1 = s

(s + 1)(s − 1)
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Two types of disturbances

u
P

dm ds

z

n

y

+
C

Load disturbances d

◮ Disturbances that affect the controlled process variables z
◮ dm measurable, can use feedforward
◮ ds non-measurable, must use feedback. Controller should have

high gain at the dominant frequencies to supress them

Measurement disturbances n

◮ Disturbances that corrupt the feedback signals
◮ Controller should have low gain at the dominant frequencies to

avoid being “fooled”

Disturbance models

Deterministic disturbance models, e.g., impulse, step, ramp,
sinusoidal signals

◮ Can be modeled by Dirac impulse filtered through linear systems

Stochastic disturbance models

◮ Common model: Gaussian stochastic process
◮ Can be modeled by white noise filtered through linear systems
◮ Reasonable model for many real-world random fluctuations

Example: control of a paper machine

Control of paper thickness – want to keep down variation in output!

Random process variations act as stochastic load disturbance
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Setpoint for controller
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Test limit

Paper thickness

◮ All paper production below the test limit is wasted

◮ Good control allows for lower setpoint with the same waste. The
average thickness is lower, which means significant cost savings

Stochastic process – definition

A stochastic process is a family of random variables {x(t), t ∈ T}
Can be viewed as a function of two variables, x = x(t, ω):

◮ Fixed ω = ω0 gives a time function x(·, ω0) (realization)

◮ Fixed t = t1 gives a random variable x(t1, ·) (distribution)

For a Gaussian process, x(t1, ·) has a normal distribution

Gaussian processes

We will mainly work with zero-mean stationary Gaussian
processes.

Mean-value function:
mx = E x(t) ≡ 0

Covariance function:

rx(τ) = E x(t + τ)x(t)T

Cross-covariance function:

rxy(τ) = E x(t + τ)y(t)T

A zero-mean stationary Gaussian process x is completely
characterized by its covariance function.

Spectral density

The spectral density or spectrum of a stationary stochastic process
is defined as the Fourier transform of the covariance function:

Φx(ω) :=
∫ ∞

−∞
rx(t)e−iωtdt

◮ Describes the distribution of power over different frequencies

By inverse Fourier transform

rx(t) = 1
2π

∫ ∞

−∞
eiωtΦx(ω) dω

In particular, the stationary variance is given by

E x(t)xT (t) = rx(0) = 1
2π

∫ ∞

−∞
Φx(ω) dω
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Covariance fcn, spectral density, and sample realization
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Error correction: The spectra should be divided by 2π

White noise

White noise with intensity R is a random process v with constant
spectrum

Φv(ω) = R

◮ Variance is infinite – not physically realizable

◮ Can be interpreted as a train of Dirac impulses with random
directions

◮ When filtered through a stable LTI system, the output is a
zero-mean stationary Gaussian process

Filtering of white noise

v y

G(s)

v x
ẋ=Ax+Bu

Assume v white noise with intensity R. Two different problems:

1. Given G(s) (or (A, B, C, D)), calculate the spectral density or
stationary variance of y (or x)

2. Conversely, given the spectral density of y, determine stable
◮ Known as spectral factorization

Calculation of spectrum – transfer function form

G(s)
v y

Given stable G(s) and input v with the spectral density Φv(ω). Then
output y gets the spectrum

Φy(ω) = G(iω)Φv(ω)G∗(iω)

Special case: If v is white noise with intensity R, then

Φy(ω) = G(iω)RG∗(iω)

Calculation of spectrum – state-space form

v x
ẋ=Ax+Bu

Assume a stable linear system with white noise input

ẋ = Ax + Bv, Φv(ω) = R

The transfer function from v to x is

G(s) = (sI − A)−1B

and the spectrum for x will be

Φx(ω) = (iωI − A)−1BR B∗(−iωI − A)−T

︸ ︷︷ ︸
G∗(iω)

Calculation of stationary covariance – state-space form

[G&L Theorem 5.3]

Given a stable linear system with white noise input

ẋ = Ax + Bv, Φv(ω) = R

Then the stationary covariance of x is given by

E xxT = 1
2π

∫ ∞

−∞
Φx(ω)dω := Πx

where Πx = ΠT
x > 0 is given by the solution to the Lyapunov equation

AΠx + ΠxAT + BRBT = 0

Calculation of covariance – example

Consider the system

ẋ = Ax + Bv =
[
−1 2
−1 0

] [
x1
x2

]
+

[
1
0

]
v

where v is white noise with intensity 1.

What is the stationary covariance of x?

First check the eigenvalues of A : λ = −1
2 ± i

√
7

2 ∈ LHP . OK!

Solve the Lyapunov equation AΠx + ΠxAT + BRBT = 02,2.

Example cont’d

AΠx + ΠxAT + BRBT = 02×2

Find Πx:
[
−1 2
−1 0

] [
Π11 Π12
Π12 Π22

]
+

[
Π11 Π12
Π12 Π22

] [
−1 −1
2 0

]
+

[
1
0

] [
1 0

]
=

=
[
2(−Π11 + 2Π12) + 1 −Π12 + 2Π22 − Π11
−Π12 + 2Π22 − Π11 −2Π12

]
=

[
0 0
0 0

]

Solving for Π11, Π12 and Π22 gives

Πx =
[
Π11 Π12
Π12 Π22

]
=

[
1/2 0
0 1/4

]
> 0

Matlab: lyap([-1 2; -1 0], [1; 0]*[1 0])
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Spectral factorization

Theorem [G&L 5.1]

Assume that the real valued, scalar function Φv(ω) ≥ 0 is a rational
function of ω2, finite for all ω. There is then a rational function G(s),
with real coefficients, and with all poles strictly in the left half plane,
and all zeros in the left half plane or on the imaginary axis, such that

Φv(ω) = |G(iω)|2 = G(iω)G(−iω)

Spectral factorization — example

Find a stable, minimum-phase filter G(s) such that a process y
generated by filtering unit intensity white noise through G gives

Φy(ω) = ω2 + 4
ω4 + 10ω2 + 9 ,

Solution. We have

Φy(ω) = ω2 + 4
(ω2 + 1)(ω2 + 9) =

∣∣∣∣
iω + 2

(iω + 1)(iω + 3)

∣∣∣∣
2

implying

G(s) = s + 2
(s + 1)(s + 3)

Lecture 3 – summary

◮ Look at all important closed-loop transfer functions: Gang of four /
gang of six

◮ Stochastic disturbances, described by covariance functions or
spectral densities

◮ White noise filtered through LTI system gives Gaussian process

◮ Calculation of spectrum and stationary covariance given
generating system

◮ Calculation of generating system given spectrum (spectral
factorization)
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