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Stability is crucial

Examples:

◮ bicycle

◮ JAS 39 Gripen

◮ Mercedes A-class

◮ ABS brakes

Input–output stability

[G&L Ch 1.6]ag

u y = S(u)
S

A system is called input–output stable (or “L2 stable” or just “stable”) if
its L2 gain is finite:

‖S‖ = sup
u

‖S(u)‖2
‖u‖2

< ∞

Input–output stability of LTI systems

For an LTI system S with impulse response g(t) and transfer function
G(s), the following stability conditions are equivalent:

◮ ‖S‖ is bounded

◮ g(t) decays exponentially

◮
∫ ∞

0 |g(t)|dt is bounded

◮ All poles of G(s) have negative real part

Internal stability

The autonomous LTI system

dx

dt
= Ax

is called exponentially stable if the following equivalent conditions
hold:

◮ The state decays exponentially, i.e., there exist constants α, β > 0
such that |x(t)| ≤ αe−βt|x(0)|, t ≥ 0

◮ All eigenvalues of A have negative real part

Exponential stability is a stronger form of asymptotic stability. For LTI
systems, they are equivalent.

Internal vs input–output stability

If ẋ = Ax is exponentially stable then G(s) = C(sI − A)−1B + D
is input–output stable.

Warning

The opposite is not always true! There may be unstable pole-zero
cancellations (that also render the system uncontrollable and/or
unobservable), and these may not be seen in the transfer function!
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Stability of feedback loops

Assume scalar open-loop system G0(s)

♥ G0(s)✲✲

−1

✲

✛

✻
Σ

The closed-loop system is stable if and only if all solutions to the
characteristic equation

1 + G0(s) = 0

are in the left half plane (i.e., have negative real part).

Simplified Nyquist criterion

If G0(s) is stable, then the closed-loop system [1 + G0(s)]−1 is stable
if and only if the Nyquist curve of G0(s) does not encircle −1.
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(Note: Matlab gives a Nyquist plot for both positive and negative frequencies)

General Nyquist criterion

Let

◮ P = number of unstable poles in G0(s)
◮ N = number of clockwise encirclements of −1 by the Nyquist plot

of G0(s)

Then the closed-loop system [1 + G0(s)]−1 has P + N unstable poles
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Sensitivity and robustness

◮ How sensitive is the closed-loop system to model errors?

◮ How do we measure the “distance to instability”?

◮ Is it possible to guarantee stability for all systems within some
distance from the ideal model?

Amplitude and phase margin

Amplitude margin Am:

arg G(iω0) = −180◦, |G(iω0)| = 1
Am

Phase margin φm:

|G(iωc)| = 1, arg G(iωc) = φm − 180◦
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Mini-problem

❢ k(s + 1)
s2 + cs + 1 e−sL

−1

✲ ✲ ✲ ✲

✛

✻

Nominally k = 1, c = 1 and L = 0. How much margin is there in each
of the parameters before the closed-loop system becomes unstable?
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How sensitive is the closed loop to changes in the plant?

❤ C(s) P (s)

−1

✲ ✲ ✲ ✲

✛

✻

r y

Y (s) = P (s)C(s)
1 + P (s)C(s)︸ ︷︷ ︸

T (s)

R(s)

dT

dP
= C

(1 + PC)2 = T

P (1 + PC)

Define the sensitivity function S,

S = dT/T

dP/P
= 1

1 + PC

and the complementary sensitivity function T ,

T = 1 − S = PC

1 + PC

Interpretation as disturbance sensitivities
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Note that

◮ T = −Gyn (sensitivity towards measurement noise)

◮ S = Gym (sensitivity towards output load disturbance)

Algebraic constraint:
S + T = 1

Cannot make both S and T close to zero at the same frequency!

Interpretation as stability margin

The sensitivity function measures the distance between the Nyquist plot
and the point −1:

R−1 = sup
ω

∣∣∣∣
1

1 + P (iω)C(iω)

∣∣∣∣ = Ms

−1

Re

Im

R

P (iω)C(iω)
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Robustness analysis

How large plant uncertainty ∆(iω) can be tolerated without
risking instability?

❢ ❢P (iω)

−C(iω)

∆(iω)

✻
✲ ❄

✛

✲

✲

✲

v w

The Small Gain Theorem

[G&L Theorem 1.1]

r1

r2

e1

e2

S1

S2

Assume that S1 and S2 are stable. If ‖S1‖ · ‖S2‖ < 1, then the
closed-loop system (from (r1, r2) to (e1, e2)) is stable.

◮ Note 1: The theorem applies also to nonlinear, time-varying, and
multivariable systems

◮ Note 2: The stability condition is sufficient but not necessary, so the
results may be conservative

Proof sketch

e1 = r1 + S2(r2 + S1(e1))

‖e1‖ ≤ ‖r1‖ + ‖S2‖
(
‖r2‖ + ‖S1‖ · ‖e1‖

)

‖e1‖ ≤ ‖r1‖ + ‖S2‖ · ‖r2‖
1 − ‖S1‖ · ‖S2‖

This shows bounded gain from (r1, r2) to e1.

The gain to e2 is bounded in the same way.
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Application to robustness analysis

❢ ❢P (iω)

−C(iω)

∆(iω)

✻
✲ ❄

✛

✲

✲

✲

v w

The diagram can be redrawn as

✛

v w
✲ ∆ ✲

−PC
1+PC

✲
✻
❡

Application to robustness analysis

✛

v w
✲ ∆ ✲

−PC
1+PC

✲
✻
❡

The Small Gain Theorem guarantees stability if

‖∆(iω)‖∞ ·
∥∥∥∥

P (iω)C(iω)
1 + P (iω)C(iω)

∥∥∥∥
∞

< 1
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Gain of multivariable systems

Recall from Lecture 1 that

||S|| = sup
ω

|G(iω)| = ||G||∞

for a stable LTI system S.

How to calculate |G(iω)| for a multivariable system?

Vector norm and matrix gain

[G&L Ch 3.5]

For a vector x ∈ Cn, we use the 2-norm

|x| =
√

x∗x =
√

|x1|2 + · · · + |xn|2

For a matrix A ∈ Cn×m, we use the L2-induced norm

‖A‖ := sup
x

|Ax|
|x| = sup

x

√
x∗A∗Ax

x∗x
=

√
λ̄(A∗A)

λ̄(A∗A) denotes the largest eigenvalue of A∗A. The ratio |Ax|/|x| is
maximized when x is a corresponding eigenvector.

(A∗ denotes the conjugate transpose of A)

Example: Different gains in different directions:
[
y1
y2

]
=

[
2 4
0 3

] [
u1
u2

]
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(red):eigenvectors ; (blue): V ; (green): U    A=U*S*V
T
 

y
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y=Gu = [4.42      2.85]
T
,      |y|= 5.26

Example: Matlab demo

Singular Values

For a matrix A, its singular values σi are defined as

σi =
√

λi

where λi are the eigenvalues of A∗A.

Let σ̄(A) denote the largest singular value and σ
¯
(A) the smallest

singular value.

For a linear map y = Au, it holds that

σ
¯
(A) ≤ |y]

|u| ≤ σ̄(A)

The singular values are typically computed using singular value decomposition (SVD):

A = UΣV ∗

SVD example

Matlab code for singular value decomposition of the matrix

A =
[

2 4
0 3

]

SVD:
A = U · S · V ∗

where both the matrices U and V are unitary (i.e. have
orthonormal columns s.t. V ∗ ·V = I) and S is the diagonal
matrix with (sorted decreasing) singular values σi.
Multiplying A with a input vector along the first column in V
gives

A · V(:,1) = USV ∗ · V(:,1) =

= US

[
1
0

]
= U(:,1) · σ1

That is, we get maximal gain σ1 in the output direction

U(:,1) if we use an input in direction V(:,1) (and minimal

gain σn = σ2 if we use the last column V(:,n) = V(:,2)).

>> A = [2 4; 0 3]
A =

2 4
0 3

>> [U,S,V] = svd(A)
U =

0.8416 -0.5401
0.5401 0.8416

S =
5.2631 0

0 1.1400
V =

0.3198 -0.9475
0.9475 0.3198

>> A*V(:,1)
ans =

4.4296
2.8424

>> U(:,1)*S(1,1)
ans =

4.4296
2.8424
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Example: Gain of multivariable system

Consider the transfer function matrix

G(s) =




2
s + 1

4
2s + 1

s

s2 + 0.1s + 1
3

s + 1




>> s=tf(’s’)
>> G=[ 2/(s+1) 4/(2*s+1); s/(s^2+0.1*s+1) 3/(s+1)];
>> sigma(G) % plot sigma values of G wrt fq
>> grid on
>> norm(G,inf) % infinity norm = system gain

ans =
10.3577
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System: G
Frequency (rad/sec): 0.0106
Singular Value (abs): 5.26

System: G
Frequency (rad/sec): 0.0101
Singular Value (abs): 1.14

System: G
Frequency (rad/sec): 0.0106
Singular Value (abs): 1.14

The singular values of the tranfer function matrix (prev slide). Note that G(0)=
[2 4 ; 0 3] which corresponds to A in the SVD-example above.
‖G‖∞ = 10.3577.

Lecture 2 – summary

◮ Input–output stability: ‖S‖ < ∞
◮ Sensitivity function: S := dT/T

dP/P = 1
1+P C

◮ Small Gain Theorem: The feedback interconnection of S1 and S2
is stable if ‖S1‖ · ‖S2‖ < 1

◮ Conservative compared to the Nyquist criterion
◮ Useful for robustness analysis

◮ The gain of a multivariable system G(s) is given by
supω σ̄(G(iω)), where σ̄ is the largest singular value
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