FRTN10 Multivariable Control, Lecture 2
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IStability
|

Stability is crucial

Examples:

» bicycle

» JAS 39 Gripen

» Mercedes A-class
> ABS brakes

Input—output stability

[G&L Ch 1.6]

u y=38(u)

A system is called input—output stable (or “L- stable” or just “stable”) if
its Lo gain is finite:

IS]| = sup 7”5(7”“2 < 00
ulull2

Input—output stability of LTI systems

For an LTI system S with impulse response ¢(t) and transfer function
G(s), the following stability conditions are equivalent:

> ||S]| is bounded

> ¢(t) decays exponentially

> 57 1g(t)|dt is bounded

> All poles of G(s) have negative real part

Internal stability

The autonomous LTI system

dx

7=

is called exponentially stable if the following equivalent conditions
hold:

» The state decays exponentially, i.e., there exist constants «, 8 > 0
such that |2(t)| < ae P[z(0)], t>0

» All eigenvalues of A have negative real part

Exponential stability is a stronger form of asymptotic stability. For LTI
systems, they are equivalent.

Internal vs input—output stability

If i = Az is exponentially stable then G(s) = C(sI — A)"'B + D
is input—output stable.

Warning

The opposite is not always true! There may be unstable pole-zero
cancellations (that also render the system uncontrollable and/or
unobservable), and these may not be seen in the transfer function!




Stability of feedback loops

Assume scalar open-loop system Gy (s)

Go(s)

-1

The closed-loop system is stable if and only if all solutions to the
characteristic equation

14+ Go(s) =0

are in the left half plane (i.e., have negative real part).

Simplified Nyquist criterion

If Go(s) is stable, then the closed-loop system [1 + Go(s)] ! is stable
if and only if the Nyquist curve of Gy(s) does not encircle —1.

Imaginary Axis
==
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Real Axis

(Note: Matlab gives a Nyquist plot for both positive and negative frequencies)

General Nyquist criterion

Let

» P = number of unstable poles in Gy(s)

» N = number of clockwise encirclements of —1 by the Nyquist plot
of Go(s)

Then the closed-loop system [1 + G(s)] ™! has P + N unstable poles
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ISensitivity and robustness

Sensitivity and robustness

» How sensitive is the closed-loop system to model errors?

» How do we measure the “distance to instability”?

» lIs it possible to guarantee stability for all systems within some
distance from the ideal model?

Amplitude and phase margin

Amplitude margin A,,:
1
arg G(iwg) = —180°, |G(iwo)| = i
m
Phase margin ¢,,:
|Gliwe)| =1, argG(iwe) = ¢m — 180°

Gain curve

Phase cu
0

Mini-problem

k(s+1) s
s24es+1

(1]
=]

Nominally £ = 1, ¢ = 1 and L = 0. How much margin is there in each
of the parameters before the closed-loop system becomes unstable?

Gm = Inf, Pm = 109.47 deg (at 1.4142 rad/sec)
1
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How sensitive is the closed loop to changes in the plant?

_ P(s)C(s)
" Tepeiee
N— ———

T(s)

ar ¢ T
dP ~ (1+PC)? ~ P(1+ PC)

Define the sensitivity function S,

darr 1
TdpP/P 1+ PC

and the complementary sensitivity function 7',

PC

T=1-5=17pc

Interpretation as disturbance sensitivities

Note that
» T = -Gy, (sensitivity towards measurement noise)

> S = Gyn (sensitivity towards output load disturbance)

Algebraic constraint:
S+T=1

Cannot make both .S and T close to zero at the same frequency!

Interpretation as stability margin

The sensitivity function measures the distance between the Nyquist plot
and the point —1:

L Im
,’//// -1 \\\\\
; | x -
P(iw)C (iw)
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IThe Small Gain Theorem

Robustness analysis

How large plant uncertainty A(iw) can be tolerated without
risking instability?

v w

Aliw)
Pliw) T

—C(iw)

The Small Gain Theorem

[G&L Theorem 1.1]

1 €1
— S

S —H~—

Assume that S; and S; are stable. If ||S; || - ||S2|| < 1, then the
closed-loop system (from (r1,72) to (e1, e2)) is stable.

> Note 1: The theorem applies also to nonlinear, time-varying, and
multivariable systems

> Note 2: The stability condition is sufficient but not necessary, so the
results may be conservative

Proof sketch

e1 =11+ Sa(re + Si(er))
lexll < el + 1Sl (lrall + 1Sl - lea )

llrall + l1S2 - lIrll

fleall <
1= (S]] - 1Szl

This shows bounded gain from (r1,72) to €.

The gain to e is bounded in the same way.




Application to robustness analysis

v w
F» Aliw)
P(iw)
—C(iw)
The diagram can be redrawn as
v w
A
—-PC
1+PC

Application to robustness analysis

-PC
1+PC

The Small Gain Theorem guarantees stability if

P(iw)C(iw)

| <1
)
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ISingular values

Gain of multivariable systems

Recall from Lecture 1 that
1811 = sup |G (iw)| = [|Glloo

for a stable LTI system S.

How to calculate |G(iw)| for a multivariable system?

Vector norm and matrix gain

[G&L Ch 3.5]

For a vector x € C", we use the 2-norm

ol = Va©z = flor[2 + -+ a2
For a matrix A € C™"*™ we use the Lo-induced norm
* A* Az =

——— =/A\(A*A

r*r ( )

A(A*A) denotes the largest eigenvalue of A*A. The ratio |Az|/|x| is
maximized when z is a corresponding eigenvector.

A
JAJ = sup 22!

(A* denotes the conjugate transpose of A)

Example: Different gains in different directions: vl _ |2 4 "
Y2 0 3] [u2

Input u=[0.309  0.951]", |ul=1
. )

-15 -10 -5 0 5 10 15
(red):eigenvectors ; (blue): V ; (green): U A=U*S*V

Example: Matlab demo

|

Singular Values

For a matrix A, its singular values o; are defined as
o=V
where )\; are the eigenvalues of A*A.

Let 5(A) denote the largest singular value and g (A) the smallest
singular value.

For a linear map y = Au, it holds that

d@s%sam

The singular values are typically computed using singular value decomposition (SVD):

A=UxV"

SVD example
>> A =[24; 03]
Matlab code for singular value decomposition of the matrix A=
2 4
2 4 0 3
A= [0 3] >> [U,8,V] = svd(a)
U=
SVD: 0.8416  -0.5401
A=U-S-V* 0.5401 0.8416
S =
where both the matrices U and V' are unitary (i.e. have 5.2631 0
orthonormal columns s.t. V*-V = I) and S'is the diagonal 0 1.1400
matrix with (sorted decreasing) singular values ;. V=
Multiplying A with a input vector along the first column in V' 0.3198  -0.9475
gives 0.9475 0.3198
AV =USV" -V = >> AxV(:,1)
1 ' ans =
=US M =Uiy 01 4.4296
2.8424

That is, we get maximal gain o1 in the output direction >> U(:,1)%8(1,1)

U(.,1) if we use an input in direction V/. 1) (and minimal ans =
4.4296

gain on, = o2 if we use the last column V(. ,,) = V/. 2)). 2.8424




Example: Gain of multivariable system

Singular Values

10°

Consider the transfer function matrix

2 4 10
G(s) = ngl 25§r1

s240.1s4+1 s+1

Singular Values (abs)

>> s=tf(’s’)
>> G=[ 2/(s+1) 4/(2%s+1); s/(s72+0.1%s+1) 3/(s+1)];
>> sigma(G) % plot sigma values of G wrt fq

107"

>> grid on 107 = 5 = .
10 10 10 10 10°
>> norm(G,inf) % infinity norm = system gain Frequency (rad/sec)
ans =
10.3577 The singular values of the tranfer function matrix (prev slide). Note that G(0)=
[2 4 ; 0 3] which corresponds to A in the SVD-example above.
|Glloo = 10.3577.
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> Input-output stability: ||S|| < co
dT/T 1

> Sensitivity function: .S := aP/P = T+PC

v

Small Gain Theorem: The feedback interconnection of S; and So
is stable if ||Sy || - [| Szl < 1

» Conservative compared to the Nyquist criterion
» Useful for robustness analysis
» The gain of a multivariable system G(s) is given by
sup,, 0(G(iw)), where & is the largest singular value




