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Course Outline

L1-L5 Specifications, models and loop-shaping by hand

@ Introduction

@ Stability and robustness

© Specifications and disturbance models
© Control synthesis in frequency domain
@ Case study

L6-L8 Limitations on achievable performance
L9-L11 Controller optimization: Analytic approach
L12-L14 Controller optimization: Numerical approach
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Lecture 2 — Outline

@ stabiiity
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Stability is crucial

Examples:

@ bicycle

@ JAS 39 Gripen

@ Mercedes A-class
@ ABS brakes
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Input-output stability

[G&L Ch 1.6]

u y=S(u)

—_— S ————

A system is called input-output stable (or “L- stable” or just “stable”) if
its Lo gain is finite:

1] — sup 1S@2

TR 200
w ull2
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Input—output stability of LTI systems

For an LTI system S with impulse response g(t) and transfer function
G(s), the following stability conditions are equivalent:

@ ||S]| is bounded
@ ¢(t) decays exponentially
@ [77 |g(t)|dt is bounded

@ All poles of G(s) have negative real part
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Internal stability

The autonomous LTI system

dx
> _A
dt

is called exponentially stable if the following equivalent conditions
hold:

@ The state decays exponentially, i.e., there exist constants «, 8 > 0
such that |z(t)| < ae ?*|z(0)|, t>0

@ All eigenvalues of A have negative real part

Exponential stability is a stronger form of asymptotic stability. For LTI
systems, they are equivalent.
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Internal vs input—output stability

If # = Ax is exponentially stable then G(s) = C(s[ — A)"!B+ D
is input—output stable.

The opposite is not always true! There may be unstable pole-zero
cancellations (that also render the system uncontrollable and/or
unobservable), and these may not be seen in the transfer function!
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Stability of feedback loops

Assume scalar open-loop system Gy (s)

Go(S) >

The closed-loop system is stable if and only if all solutions to the
characteristic equation

1+ Go(s) =0

are in the left half plane (i.e., have negative real part).
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Simplified Nyquist criterion

If Go(s) is stable, then the closed-loop system [1 + Go(s)] ! is stable
if and only if the Nyquist curve of G(s) does not encircle —1.

P 1
x
<
>
g or
k=)
©
E
1 05 0 05

Real Axis

(Note: Matlab gives a Nyquist plot for both positive and negative frequencies)
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General Nyquist criterion

Let

@ P = number of unstable poles in Gy(s)

@ N = number of clockwise encirclements of —1 by the Nyquist plot
of G()(S)

Then the closed-loop system [1 + Go(s)]~! has P + N unstable poles
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Lecture 2 — Outline

Q Sensitivity and robustness
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Sensitivity and robustness

@ How sensitive is the closed-loop system to model errors?
@ How do we measure the “distance to instability”?

@ |s it possible to guarantee stability for all systems within some
distance from the ideal model?
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Amplitude and phase margin

Amplitude margin A,,:
1
arg G(iwp) = —180°, |G(iwo)| = T
m
Phase margin ¢,,:

|G(iwe)| =1, arg G(iw:) = ¢pm — 180°

Gain curve

1/AL

Re
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' G(iw)  I——
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Mini-problem

kE(s+1) o
s24+cs+1

reoll

Nominally £k = 1, ¢ = 1 and L = 0. How much margin is there in each
of the parameters before the closed-loop system becomes unstable?

Gm = Inf, Pm = 109.47 deg (at 1.4142 rad/sec)
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Mini-problem

omatic Control LTH, 2017 FRTN10 Multivariable Coi



How sensitive is the closed loop to changes in the plant?

C(s) P(s)
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dr C T

dP ~ (1+PC)2  P(1+PC)

Define the sensitivity function S,

b= 2 B

S_dP/P_ 1+ PC

and the complementary sensitivity function 7',
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Interpretation as disturbance sensitivities
l m
r @ u Yy
© P

-1 ®

Note that
o T'= —Gy, (sensitivity towards measurement noise)

@ S = Gy, (sensitivity towards output load disturbance)

Algebraic constraint:
S+T=1

Cannot make both .S and T’ close to zero at the same frequency!
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Interpretation as stability margin

The sensitivity function measures the distance between the Nyquist plot
and the point —1:

1
ROt =sup i P(iw)C (iw) ‘ N
A Im
,’/ _1 \\\
: ' \‘ -
P(iw)C (iw)
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Lecture 2 — Outline

9 The Small Gain Theorem
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Robustness analysis

How large plant uncertainty A(iw) can be tolerated without
risking instability?

(% w

Aliw)
P(iw) T

—C(iw)
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The Small Gain Theorem

[G&L Theorem 1.1]

1 e1
AV, S

S [—O~—

Assume that S; and Sy are stable. If ||S1]| - ||S2|| < 1, then the
closed-loop system (from (r1,72) to (e1, e2)) is stable.
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The Small Gain Theorem

[G&L Theorem 1.1]

1 el
N S1

S |—O~—

Assume that S; and Sy are stable. If ||S1]| - ||S2|| < 1, then the
closed-loop system (from (r1,72) to (e1, e2)) is stable.

@ Note 1: The theorem applies also to nonlinear, time-varying, and
multivariable systems

@ Note 2: The stability condition is sufficient but not necessary, so the
results may be conservative
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Proof sketch

er1 =11+ Sa(re + Si(er))

lexl < firell + 11820l (lir2l + 1S11] - fleal)

leal] < Irall + IS2ll - llr2]|
= 1|8 - ISl

This shows bounded gain from (71, 72) to €.

The gain to es is bounded in the same way.
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Application to robustness analysis

(% w

T A(iw)
P(iw)

—C(iw)

The diagram can be redrawn as

(% w
——0—— A -

—-PC
1+PC
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Application to robustness analysis

(Y w

— s O—> A >
—PC |
1+PC |

The Small Gain Theorem guarantees stability if

P(iw)C(iw)
1+ P(iw)C(iw)

A G) | <1

Hoo
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Lecture 2 — Outline

0 Singular values
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Gain of multivariable systems

Recall from Lecture 1 that
|IS]| = sgplG(iw)\ = [|Gl|oo

for a stable LTI system S.

How to calculate |G (iw)| for a multivariable system?
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Vector norm and matrix gain

[G&L Ch 3.5]

For a vector x € C™, we use the 2-norm

fof) 2 TR \/\x1\2 + - |zp|?

For a matrix A € C™*™, we use the Ly-induced norm

|Az| x*A* Az =
Al = — = ————— =/ \(A4*4
[ e e 5= N

A(A*A) denotes the largest eigenvalue of A*A. The ratio |Ax|/|z| is
maximized when z is a corresponding eigenvector.

(A* denotes the conjugate transpose of A)
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Example: Different gains in different directions: vil |2 4w
Y2 0 3] |u2

Input u=[0.309  0.951]", |ul=1
;

y=Gu=[442 285", |y|=5.26

04
(%)
5
=

-15 -10 -5
(red):eigenvectors ; (blue): V ; (green): U A=U'SV
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Singular Values

For a matrix A, its singular values o; are defined as

di=f%s

where A; are the eigenvalues of A* A.

Let 5(A) denote the largest singular value and o (A) the smallest
singular value.

For a linear map y = Auw, it holds that

1yl

o(A) <

A= g = A
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Singular Values

For a matrix A, its singular values o; are defined as

di=f%s

where A; are the eigenvalues of A* A.

Let 5(A) denote the largest singular value and o (A) the smallest
singular value.

For a linear map y = Auw, it holds that

o(4) < :ﬂ < 5(4)

The singular values are typically computed using singular value decomposition (SVD):

A=UXV"
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SVD example

Matlab code for singular value decomposition of the matrix
2 4
2=l 3]

A=U-S-Vv*

SVD:

where both the matrices U and V' are unitary (i.e. have
orthonormal columns s.t. V*-V = I)and S is the diagonal
matrix with (sorted decreasing) singular values o;.
Multiplying A with a input vector along the first column in V'
gives

A IR T TR
1
= US |:0i| = U(:,l) s 01
That is, we get maximal gain o1 in the output direction

U1y if we use an input in direction V. 1) (and minimal

gain o, = o2 if we use the last column V. .y = V(. 2)).

Automatic Control LTH, 2017

>> A = [2 4; 03]
A=
2 4
0 3
>> [U,S,V] = svd(4)
U =
0.8416 -0.5401
0.5401 0.8416
S =
5.2631 0
0 1.1400
vV =
0.3198 -0.9475
0.9475 0.3198
>> AxV(:,1)
ans =
4.4296
2.8424

>> U(:,1)%S(1,1)

ans =
4.4296
2.8424
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Example: Gain of multivariable system

Consider the transfer function matrix

2 4
G(s) = s—;—l 2s§|—1

s24+01s+1 s+1

>> s=tf(’s’)
>> G=[ 2/(s+1) 4/(2*s+1); s/(872+0.1*xs+1) 3/(s+1)];
>> sigma(G) % plot sigma values of G wrt fq
>> grid on
>> norm(G,inf) Y infinity norm = system gain
ans =
10.3577
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Singular Values

10
.| systema
10" E Frequency (rad/sec): 0.0106 8
Singular Value (abs): 5.26

_ n
2
2
8 System: G
@ Frequency (rad/sec): 0.0106
3 Singular Value (abs): 1.14
s
> "
3
E
ES
c
(2}

107k

1072 | | |

10% 107 10° 10 10°

Frequency (rad/sec)

The singular values of the tranfer function matrix (prev slide). Note that G(0)=
[2 4 ; 0 3] which corresponds to A in the SVD-example above.
IGllso = 10.3577.
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Lecture 2 — summary

@ Input—output stability: ||S|| < co

@ Sensitivity function: S := % = H%C

@ Small Gain Theorem: The feedback interconnection of S; and Ss
is stable if || Sy || - [|Saf| < 1

@ Conservative compared to the Nyquist criterion
@ Useful for robustness analysis

@ The gain of a multivariable system G(s) is given by
sup,, (G (iw)), where ¢ is the largest singular value

Automatic Control LTH, 2017 FRTN10 Multivariable Control, Lecture 2



	Stability
	Sensitivity and robustness
	The Small Gain Theorem
	Singular values

