
FRTN10 Exercise 11. Youla Parametrization, Internal

Model Control

11.1 Consider the control system in Figure 11.1, designed for the stable, linear,

SISO system P0.

We first want to rewrite the system in the more general form presented in

Figure 11.2. In this figure: w are the external inputs to the system (e.g.

disturbances and reference), z gathers all signals that we are interested in

controlling, u are the control signals from C, and y contains all signals used

by the controller (e.g. reference and measurements).

a. Choose

w =









d

n








, z =









x

v









P in Figure 11.2 consists of a number of different subsystems as

P =









Pzw Pzu

Pyw Pyu









shows. Derive P and determine Pzw, Pzu, Pyw and Pyu as transfer function

matrices.

b. Call the closed-loop system (from w to z) H. Show that H = Pzw + PzuC(1−
PyuC)−1 Pyw. Note that we normally have a −1 in the feedback loop. Here it

is assumed that this sign is part of the controller instead, hence the minus

sign in (1− PyuC).

c. Determine H for the system in Figure 11.1 and rewrite it in terms of the (out-

put) sensitivity function S = 1
1−PyuC

and complementary sensitivity function

T = −
PyuC

1−PyuC
. Use the formula in b.

d. Rewrite H using the Q parameterization Q = C(1 − PyuC)−1. Note that all

the elements in H are linear in Q.

11.2 Note: It is recommended that you solve this problem before you start on Exercise

12.

C
x

d

vu
P0

n

y
Σ

Σ

Figure 11.1 The block diagram of the closed-loop system in Problem 11.1.
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Figure 11.2 General form of a closed-loop system.
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Figure 11.3 Mass spring system in Problem 11.2.

Let us consider the physical system shown in Figure 11.1, showing two masses,

lightly coupled through a spring with spring constant k and damping b. The

only sensor signal we have is the noisy measurement p2 + n of the position,

p2, for the small mass, m. The purpose of the controller is to make the posi-

tion of the large mass, p1, follow a reference input, r, such that the control

error e becomes small. This is in turn weighted against controller effort in a

quadratic cost function (the objective)

J =

∫∞

0

γ e2(t) + ρu2(t)dt

Minimization of this function will be subject to constraints on:

• maximum magnitude of the control signal qu(t)q < umax (the force acting

on the large mass) during a reference step

• step response overshoot, rise time and settling time from r to the position

p1 (performance constraint)

• the maximum norm of the sensitivity function, qS(iω)q∞ ≤ Ms (robust-

ness constraint)

The system can be described by the equations of motion

Mp̈1 + b(ṗ1 − ṗ2) + k(p1 − p2) = u

mp̈2 + b(ṗ2 − ṗ1) + k(p2 − p1) = 0
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Figure 11.4 The block diagram of the closed-loop system in Problem 11.2.

Setting the plant states to

x =



























ṗ1

p1

ṗ2

p2



























we can rewrite the system in state-space form

ẋ = Ax+ Bu

p1 = C1 x

p2 = C2 x

where

A =



























−b/M −k/M b/M k/M

1 0 0 0

b/m k/m −b/m −k/m

0 0 1 0



























B =



























1/M

0

0

0



























C1 =


 0 1 0 0





C2 =


 0 0 0 1





Let M = 20 kg, m = 1 kg, k = 32 N/m and b = 0.3 Ns/m.

Now, consider the problem to set up this system in a form such that we can

optimize over the Q parametrization. Have Figure 11.4 as a reference. Then,

the exogenous signals, w, of the system are

• the reference r,

• the noise input n,

• an input disturbance d (used for the robustness constraint).

The exogenous outputs, z, are

• the position, p1, of the large mass M,
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Figure 11.5 General form of a closed-loop system.

• the actuator input to the plant, uo,

• the control error e = r− p1.

The control signal, u, to the plant is

• the force u on the large mass M.

The sensed (measured) outputs y (i.e. those accessible to the controller) are

• the reference r,

• the noisy measurement p2 + n.

In other words, we have

w =

















r

n

d

















, z =

















p1

uo

e

















, y =









r

p2 + n








.

With these variables, we can rewrite the system in the more general form

shown in Figure 11.5. In state-space form, this becomes

ẋ = Ax+ Bww+ Bu (11.1)

z = Cz x+ Dzww+ Dzuu (11.2)

y = Cy x+ Dyww+ Dyuu (11.3)

a. Determine all matrices in equations (11.1)–(11.3).

b. On the next exercise session we will use software that solves the minimization

problem. This software will need to know the general process P, determined

by (11.1)–(11.3), and the element indices of the closed-loop transfer function

H corresponding to the constraints and cost function specified for the control

design problem. For instance, the step response overshoot, rise time and

settling time will correspond to Hp1r which has index (1, 1). Determine the

rest of these indices.

c. How many inputs and outputs will the Q parametrization have?

11.3 Derive a controller using the IMC method on the following system

P(s) =
6− 3s

s2 + 5s+ 6
.
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Show that the controller has the form of a PID controller and a first order

filter, i.e.

K

(

1+
1

Tis
+ Tds

)

1

sT + 1

11.4 Processes in industry often have time delays that give phase lags with the

result of limiting the achievable performance, resulting in a fundamental

limitation. Model based control structures that give good performance for

such processes are available. Consider the simple process

P(s) =
1

s+ 1
e−4s,

which is clearly delay dominant (time delay larger than time constant).

a. Use IMC to design a delay compensating controller for this process.

b. ÏÍ Draw the Nyquist plot for the loop transfer function (with a chosen

value of λ) and conclude whether the closed-loop system is stable.
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Solutions to Exercise 11. Youla Parametrization, Internal

Model Control

11.1 a. We can divide P even further into smaller parts such that

Pzw =









Pxd Pxn

Pvd Pvn








, Pzu =









Pxu

Pvu








, Pyw =



 Pyd Pyn





Looking at the block diagram of the closed-loop system, we see that

Pxd = P0, Pxn = 0, Pvd = 1, Pvn = 0

Pxu = P0, Pvu = 1

Pyd = P0, Pyn = 1

Pyu = P0

Note that you have to determine the open-loop transfer functions, as if C = 0.

The results gives us the following transfer matrix P:

P =

















P0 0 P0

1 0 1

P0 1 P0

















,

where

Pzw =









P0 0

1 0







 , Pzu =









P0

1







 , Pyw =


 P0 1



 , Pyu = P0

b.

u = Cy

y = Pyuu+ Pyww = PyuCy+ Pyww [ y =
1

1− PywC
Pyww

z = Pzww+ Pzuu = Pzww+ PzuCy = (Pzw + PzuC
1

1− PywC
Pyw)w

c. Using the formula, we get

H = Pzw + PzuC(1− PyuC)−1 Pyw

=









P0 0

1 0








+









P0

1








C(1− P0C)−1



 P0 1





=









P0 0

1 0








+

C

1− P0C









P2
0 P0

P0 1









=
1

1− P0C









(P0 − P2
0C) + P2

0C P0C

(1− P0C) + P0C C







 =









P0 S −T

S C S








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Figure 11.1 Mass spring system in Problem 11.2.

This means that the closed loop transfer function H consists of the gang of

four. Note that

T = 1− S = −
P0C

1− P0C

in this case where we have no explicit minus sign in the feedback loop.

d. Go back to the formula H = Pzw + PzuC(1− PyuC)−1 Pyw, but replace C(1−
PyuC)−1 with Q. This gives

H = Pzw + PzuQPyw =









P0 0

1 0








+ Q









P2
0 P0

P0 1








=









P0 + P2
0 Q P0Q

1+ P0Q Q









where each element of H is linear in Q.

11.2 a. From the equation for the plant

ẋ = Ax+ Bu

p1 = C1 x

p2 = C2 x
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and the block diagram of the closed-loop system, we can see that

ẋ = Ax+ B(u+ d) = Ax+ ( 0 0 B )







r

n

d






+ Bu

= Ax+ Bww+ Bu

z =







p1

uo

e






=







C1 x

u+ d

r− p1






=







C1 x

u+ d

r− C1 x







=







C1

0

−C1






x+







0 0 0

0 0 1

1 0 0













r

n

d






+







0

1

0






u

= Cz x+ Dzww+ Dzuu

y =

(

r

p2 + n

)

=

(

r

C2 x+ n

)

=

(

0

C2

)

x+

(

1 0 0

0 1 0

)







r

n

d






+

(

0

0

)

u

= Cy x+ Dyww+ Dyuu

b. The constraint on the maximum control signal, qu(t)q ≤ umax, will correspond

to the closed loop transfer matrix Huor, with index (2, 1). In problem 11.1

we saw that the transfer function Huod will correspond to the sensitivity

function S. The Ms constraint will therefore correspond to the index (2, 3).
The objective function will be related to two indices, namely those associated

with Her and Huor, (3, 1) and (2, 1).

c. We have the formula H = Pzw + PzuQPyw. Since Pzu is a 3 $ 1 system and

Pyw is a 2$3 system, Q must be 1$2. Therefore we have that Q = [Q1 Q2].

11.3 The system is non-minimum phase. There are many ways to choose the Q

filter for IMC, but we have to respect some fundamental limitations. Here

we will use a simple choice of Q. We try to cancel the process dynamics with

Q(s), but use the stable counterpart 6+ 3s of the zero instead. We also need

to add a pole to Q(s) to make it proper, which we place in s = −λ−1. We get

Q(s) =
s2 + 5s+ 6

(6+ 3s)(λs+ 1)
=

s+ 3

3(λs+ 1)

The controller becomes

C(s) =
s2 + 5s+ 6

s(3λs+ 6(λ+ 1))

which can be rewritten as

C(s) =
5

6(1+ λ)

(

1+
6

5s
+

s

5

)

1
3λ

6(λ+1)s+ 1
.

This corresponds to a PID controller in series with a lowpass filter.
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11.4 a. As before, there are many ways to apply IMC. Here we try the two approaches

to deal with time delays described in Glad&Ljung section 8.3.

1. Choose to ignore the time delay when the Q(s) transfer function is

calculated, but not when Fy(s) is calculated.

Thus, we get

Q(s) =
(P(s)e4s)−1

λs+ 1

Hence, the controller is given by

Fy(s) =
Q(s)

1− Q(s)P(s)
=

s+ 1

λs+ 1− e−4s

2. Approximate the time delay with a first order Padé approximation,

G(s) (
1

s+ 1

1− 2s

1+ 2s
.

When we calculate the Q(s)-transfer function, we exclude 1 − 2s. Thus,

we now have

Q(s) =
(s+ 1)(2s+ 1)

(λs+ 1)2
.

Hence we have the controller

Fy(s) =
Q(s)

1− Q(s)P(s)
=

(s+ 1)(2s+ 1)

(λs+ 1)2 − (1+ 2s)e−4s

b. The Nyquist plots can be generated in Matlab, using the following lines of
code. (Note that feedback delay systems are not always handled by Control
System Toolbox.) In this case, lambda is chosen to 3.

>> lambda = 3;

>> w = logspace(-2,2,1000);

>> P = 1./(1+i*w).*exp(-4*i*w);

>> Fy1 = (i*w+1)./(lambda*i*w+1-exp(-4*i*w));

>> Fy2 = (i*w+1).*(1+2i*w)./((lambda*i*w+1).*(lambda*i*w+1)-(1+2*i*w).*exp(-4*i*w));

>> figure

>> plot(P.*Fy1)

>> grid

>> figure

>> plot(P.*Fy2)

>> grid

From the plots (Figure 11.2) we see that neither encircles −1 and the closed

loop systems are stable in both cases.
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Figure 11.2 Nyquist plots of the loop transfer functions in Problem 11.4. The left plot shows

the first alternative and the right plot shows the second.
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