
FRTN10 Exercise 9. Kalman Filtering, LQG

9.1 Consider the first-order unstable system with the dynamics

G(s) = 1

s− 1

and with a state-space representation with additive noise

ẋ(t) = x(t) + u(t) + v1(t)
y(t) = x(t) + v2(t)

The uncorrelated noise signals vi(t) are white with intensities Ri. We want

to investigate how the optimal Kalman filter depends on noise parameters.

a. Show that the Kalman filter gain only depends on the ratio β = R1/R2.

b. Find the error dynamics, i.e., the dynamics of the estimation error x̃(t) =
x(t) − x̂(t).

c. How does the error dynamics depend on the ratio β = R1/R2? Interpret the

result for large β (process noise much larger than measurement noise), and

for small β (measurement noise much larger than process noise).

9.2 ÏÍ A Kalman filter should be designed for the second-order system

ẋ(t) =
(

0 1

1 0

)

x(t) +
(

1

0

)

u(t) +
(

1

1

)

v1(t)

y(t) = ( 1 0 ) x(t) + v2(t)

where vi are uncorrelated white noise processes with intensity 1.

a. Find the optimal filter gain K using lqe in Matlab.

b. Find the optimal filter gain K and formulate the resulting observer using

kalman in Matlab.

9.3 Consider the first-order stable system with dynamics

G(s) = 1

s+ 1

and a state-space representation with additive noise

ẋ(t) = −x(t) + u(t) + v1(t)
y(t) = x(t) + v2(t)

The noise signals vi(t) are assumed to be uncorrelated. To attenuate constant

load disturbances, we would like to design an LQG controller with high low-

frequency gain.
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Exercise 9. Kalman Filtering, LQG

a. To model low-frequency load disturbances, we extend the plant model as

ẋ(t) = −x(t) + u(t) + v1(t) + d(t)
y(t) = Cx(t) + v2(t)

where d(t) is obtained by filtering white noise vd(t) through the low-pass

filter

H(s) = 1

s+ ε

where ε is a small number. Find a state-space realization of the extended

system, including the noise filter, in the form

ẋe(t) = Ae xe(t) + Beu(t) + Nev1e(t)
y = Ce xe(t) + v2(t)

where v1e =
(

v1

vd

)

. What are the extended matrices Ae, Be, Ne, Ce?

b. ÏÍ Design an LQG controller for the extended system assuming the cost

function

J = E
(

x2 + ρu2
)

where ρ is a small number. Assume the noise intensities R1 = Rd = R2 = 1

and pick a small number for ε. Verify that the resulting controller has high

gain at low frequencies. (Why does ρ need to be small?)

9.4 Consider control of a DC-motor,

G(s) = 1

s(s+ 1)

Introduce the state variables x1 = y, x2 = ẏ. White process noise is active

on both states with intensity 1 and with input vector ( 0.1 0.1 )T . There is

also noise on the measurements with intensity 0.1. This gives the following

state-space model

ẋ(t) =
(

0 1

0 −1

)

x(t) +
(

0

1

)

u(t) +
(

0.1

0.1

)

v1(t)

y(t) = ( 1 0 ) x(t) + v2(t)

with R1 = 1, R2 = 0.1 and R12 = 0

a. One wishes to use the motor to drive an external system that might be

oscillatory around the frequency 0.5 rad/s, but there is no detailed knowledge

about its properties. In order not to excite the oscillatory modes we would

like the controller to have small gain around the this frequency. This can be

achieved by extending the plant model as

ẋ = Ax+ Bu+ Nv1

ye = Cx+ w+ v2

2



Exercise 9. Kalman Filtering, LQG

The extra measurement disturbance w is generated by passing white noise n

through a second-order filter with a transfer function

H(s) = Kvs

s2 + 2ζω0s+ω2
0

with ω0 = 0.5 rad/s. The parameter ζ determines the magnitude of the filter

resonance peak, and we can choose e.g. ζ = 0.02.

Derive the extended process model and the noise intensity matrices needed

to compute the Kalman filter gain.

b. ÏÍ Compute the Kalman filter using kalman in Matlab. Plot the transfer

function of the Kalman filter from y to x̂1 (= ŷ). Can you see the implication

of the noise modeling?

c. ÏÍ Assuming the cost function

J = E
(

x2
1 + u2

)

design an LQ control law for the extended plant. Then combine the state

feedback law with the Kalman filter from b to form a complete LQG controller.

Verify that the controller also has low gain around the frequency 0.5 rad/s.

9.5 (*) Consider the task of estimating the states of a double integrator where noise

with intensity 1 affects the input only and we have measurement noise of

intensity 1.

a. Determine the optimal Kalman filter (by hand calculations).

b. What are the Kalman filter poles?
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Solutions 9. Kalman Filtering, LQG

Solutions to Exercise 9. Kalman Filtering, LQG

9.1 a. We have A = B = C = N = 1. The Riccati equation thus reduces to

2P + R1 −
P2

R2

= 0,

which has the positive solution P = R2 + R2

√

1+ R1
R2

. Thus, the Kalman

filter gain is

K = 1

R2

P = 1+
√

1+ R1

R2

= 1+
√

1+ β.

b. The Kalman filter dynamics are given by

˙̂x(t) = Ax̂(t) + Bu(t) + K(y(t) − Cx̂(t))

where y(t) = Cx(t) + v2(t). Using the values A = B = C = N = 1 we have

the error dynamics

˙̃x(t) = (A−KC)x̃(t)−Kv2(t)+v1(t) = −
√

1+ β x̃(t)−(1+
√

1+ β)v2(t)+v1(t)

c. The position of the Kalman filter pole is −
√

1+ β . We can see that if β →∞,

the pole of the Kalman filter → −∞. Hence, the estimation error dynamics

are fast, and the Kalman filter very much trusts the measurements. On the

other hand, if β → 0, the Kalman filter pole tends to −1, that is, as fast

as the process pole. Now, the filter trusts the model much more than the

measurements.

9.2 See Matlab code below.

>> A = [0 1;1 0];

>> B = [1; 0];

>> C = [1 0];

>> N = [1; 1];

>> R1 = 1;

>> R2 = 1;

a. >> % Using lqe

>> K = lqe(A,N,C,R1,R2)

K =

2.4142

2.4142

>>

b. >> % Using kalman

>> sysk = ss(A,[B N],C,0);

>> [obs,K] = kalman(sysk,R1,R2)

obs =

A =
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Solutions 9. Kalman Filtering, LQG

x1_e x2_e

x1_e -2.414 1

x2_e -1.414 0

B =

u1 y1

x1_e 1 2.414

x2_e 0 2.414

C =

x1_e x2_e

y1_e 1 0

x1_e 1 0

x2_e 0 1

D =

u1 y1

y1_e 0 0

x1_e 0 0

x2_e 0 0

Input groups:

Name Channels

KnownInput 1

Measurement 2

Output groups:

Name Channels

OutputEstimate 1

StateEstimate 2,3

Continuous-time state-space model.

K =

2.4142

2.4142

9.3 a. The noise model can have for instance the realization

ḋ(t) = −ε d(t) + vd(t)

Using the extended state vector xe =
(

x

d

)

the extended process model is

ẋe(t) =
(−1 1

0 −ε

)

︸ ︷︷ ︸

Ae

xe(t) +
(

1

0

)

︸︷︷︸

Be

u(t) +
(

1 0

0 1

)

︸ ︷︷ ︸

Ne

v1e(t)

y(t) = ( 1 0 )
︸ ︷︷ ︸

Ce

xe(t) + v2(t)

b. Matlab code:
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Solutions 9. Kalman Filtering, LQG

epsilon = 1e-6;

rho = 1e-4;

Ae = [-1 1; 0 -epsilon];

Be = [1; 0];

Ce = [1 0];

Pe = ss(Ae,Be,Ce,0);

Ne = eye(2);

Q1e = Ce’*Ce;

Q2 = rho;

Le = lqr(Ae,Be,Q1e,Q2)

R1e = eye(2);

R2 = 1;

Ke = lqe(Ae,Ne,Ce,R1e,R2)

ctrl = reg(Pe,Le,Ke);

bode(ctrl)

It is seen in the Bode diagram (Figure 9.1) that the controller has high gain

for low frequencies. The gain is however limited by the ρ parameter, which

needs to be small to allow for large control signals that can compensate for

the extra disturbance. The value of ε will also limit the low-frequency gain.
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Figure 9.1 Controller Bode diagram in Problem 9.3.

9.4 a. In state-space form, the filter is given by (for instance)

ẋv(t) =
(−0.02 −0.25

1 0

)

xv(t) +
(

1

0

)

n(t)

w(t) = ( Kv 0 ) xv(t)
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Solutions 9. Kalman Filtering, LQG

Extending the original state-space form with the noise model we obtain

ẋ(t) =








0 1 0 0

0 −1 0 0

0 0 −0.02 −0.25

0 0 1 0








x(t) +








0

1

0

0








u(t) +








0.1 0

0.1 0

0 1

0 0








(

v1(t)
n(t)

)

ye(t) = ( 1 0 Kv 0 ) x(t) + v2(t)

If this model is used to compute K in the Kalman filter, for an appropriate

value of Kv, we get supression of the resonance frequency. The intensity of

the added noise input can e.g. be set to 1 since we can control the amplitude

of the disturbance by changing Kv. Thus, we have the intensity matrices

R1 = diag(1, 1), R2 = 0.1.

b. See Figure 9.2 for the Bode plot of the Kalman filter transfer function from

measurement y(t) to estimated process output x̂1(t) using Kv = 1. We see a

large attenuation of frequencies at ω = 0.5 rad/s. (See Matlab code below.)
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Figure 9.2 Kalman filter Bode diagram in Problem 9.4 b.

c. The Bode plot of the LQG controller transfer function from −y to u is shown

in Figure 9.3. Again, we see a large attenuation of frequencies around ω = 0.5

rad/s.

Matlab code:

% Extended process model

A = [0 1 0 0; 0 -1 0 0; 0 0 -0.02 -0.2501; 0 0 1 0];

B = [0 1 0 0]’

C = [1 0 1 0];

N = [0.1 0; 0.1 0; 0 1; 0 0];

R1 = eye(2);

R2 = 0.1;
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Figure 9.3 LQG controller Bode diagram in Problem 9.4 c.

% Design Kalman filter

sysk = ss(A,[B N],C,0);

kest = kalman(sysk,R1,R2);

Gx1hat_y = kest(2,2); % transfer function from y to x1hat

figure(1)

bode(Gx1hat_y)

grid on

% Design LQ state feedback and formulate LQG controller

Q1 = diag([1 0 0 0]);

Q2 = 0.1;

L = lqr(A,B,Q1,Q2)

P = ss(A,B,C,0);

ctrl = -lqgreg(kest,L);

figure(2)

bode(ctrl)

grid on

9.5 a. One possible state-space realization is

ẋ(t) =
(

0 1

0 0

)

x(t) +
(

0

1

)

u(t) +
(

0

1

)

v1(t)

y(t) = ( 1 0 ) + v2(t)

The Riccati-equation

AP + PAT + N R1 NT − PCT R−1
2 C P = 0
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Solutions 9. Kalman Filtering, LQG

is solved by letting P =
(

p1 p2

p2 p3

)

. The equations become

2p2 − p2
1 = 0

p3 − p1p2 = 0

1− p2
2 = 0

The positive solution is

P =
(

√
2 1

1
√

2

)

with the optimal gain

K = PCT = (
√

2 1 )T

b. The poles of the Kalman filter are the eigenvalues of A− KC,

A− KC =
(−
√

2 1

−1 0

)

with the eigenvalues λ j =
1√
2
(−1± i).
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