
FRTN10 Exercise 8. Linear-Quadratic Control

8.1 Consider the first-order unstable process

ẋ(t) = ax(t) + u(t), a > 0

a. Design an LQ controller u(t) = −Lx(t) that minimizes the criterion

J =
∞

∫

0

(

x2(t) + ρu2(t)
)

dt.

b. ÏÍ Do the design for different ρ using Matlab assuming a = 1 and plot the

position of the closed-loop pole as a function of ρ. Explain how the speed of

the system depends on ρ.

8.2 Consider the second-order system

ẋ(t) =
(

1 0

1 0

)

x(t) +
(

1

0

)

u(t)

y(t) = ( 1 1 ) x(t)

a. Design an LQ controller u(t) = −Lx(t) that minimizes the criterion

J =
∞

∫

0

(

y2(t) + u2(t)
)

dt.

What are the poles of the closed-loop system?

b. ÏÍ Solve the same problem as in a. by

1. using lqr in Matlab.

2. using care to solve the algebraic Riccati equation in Matlab.

Also simulate the closed-loop system from the initial condition x(0) = ( 1 1 )T .

8.3 Consider a process

ẋ(t) =
(−1 0

0 −2

)

x(t) +
(

3

2

)

u(t)

Show that u(t) = −Lx(t) with

L = ( 2 −3 )

can not be an optimal state feedback designed using linear quadratic theory

with the cost function

J =
∞

∫

0

(

xT(t)Q1 x(t) + Q2u2(t)
)

dt

where Q1, Q2 > 0.

Hint: Sketch the Nyquist plot of the loop transfer function L(sI − A)−1B.
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8.4 Consider the system

ẋ =








1 −1

2 4








x+









−4

8








u

y =


 1 1



 x

One wishes to minimize the criterion

J(T) =
∫T

0

(

xT(t)Q1 x(t) + Q2u2(t)
)

dt

Is it possible to find positive definite weights Q1 and Q2 such that the cost

function J(T) < ∞ as T →∞?

8.5 We would like to control the following process with linear-quadratic optimal

control:

ẋ(t) =








1 3

4 8








x(t) +









1

0.1








u(t)

y(t) =


 0 1



 x(t)

The penalty on x2
1(t) should be 1, and the penalty on x2

2(t) should be 2. For

u2(t) we will try different penalty values: ρ = 0.01, 1, 100.

a. Determine the cost function for the three different cases.

b. ÏÍ Assume that we want to add reference tracking so that y = r in

stationarity, using the control law u(t) = Lrr(t)− Lx(t). In Matlab, calculate

the three different resulting controllers, calculate the resulting closed-loop

poles and simulate step responses from r to x2 and from r to u. Verify that

there is no static error.

8.6 Consider the double integrator

ẋ(t) =








0 1

0 0








x(t) +









0

1








u(t)

y(t) =


 1 0



 x(t)

A set of LQ controllers u(t) = −Lx+Lrr have been designed. L was calculated

to minimize the cost function

J =
∫∞

0

(

xT(t)Q1 x(t) + Q2u2(t)
)

dt

and Lr was chosen to give unit static gain from r to y. The four plots in

Figure 8.1 show the step responses of the closed-loop system for four different

combinations of weights, Q1, Q2. Pair the combinations of weights given below

with the step responses in Figure 8.1.
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Figure 8.1 Step responses for LQ-control of the system in Problem 8.6 with different weights

on Q1, Q2.
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
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0 0
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
, Q2 = 0.01
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Q1 =
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0 0
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
, Q2 = 1

3)

Q1 =








1 0

0 1








, Q2 = 1

4)

Q1 =








1 0

0 0








, Q2 = 1000

8.7 (*) Consider the double integrator

ξ̈ (t) = u(t).

with state-space representation

ẋ =



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
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Exercise 8. Linear-Quadratic Control

where x = (ξ (t), ξ̇ (t)). You would like to design a controller using the criterion

∫∞

0

(ξ 2(t) + η · u2(t)) dt

for some η > 0.

a. Show that S =








s1 s2

s2 s3








with

s1 =
√

2 · η1/4

s2 = η1/2

s3 =
√

2 · η3/4

solves the Riccati equation.

b. What are the closed-loop poles of the system when using this optimal state

feedback? What happens with the control signal if η is reduced?
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Solutions to Exercise 8. Linear-Quadratic Control

8.1 a. Using A = a, B = 1, Q1 = 1, Q2 = ρ, Q12 = 0 the Riccati equation becomes

2Sa+ 1− Sρ−1 S = 0

The positive solution is

S = aρ +
√

(aρ)2 + ρ

and the optimal controller gain is given by

L = S

ρ
= a+

√

a2 + 1

ρ
.

b. See Matlab code below and Figure 8.1. Conclusion: Less weight on u gives a

faster system since we are allowed to use the control signal more, and vice

versa.

A = 1;

B = 1;

C = 1;

P = ss(A,B,C,0);

Q1 = 1;

rhovec = 0.001:0.001:0.5;

Evec = zeros(size(rhovec));

for i = 1:length(rhovec)

rho = rhovec(i);

[L,S,E] = lqr(P,Q1,rho);

Evec(i) = E;

end

plot(rhovec, Evec)

xlabel(’Control signal weight’)

ylabel(’Closed-loop pole’)

grid

8.2 a. Using y(t) = Cx(t) we first rewrite the cost function as

J =
∞

∫

0

(

xT(t)CTCx(t) + u2(t)
)

dt

from which we identify Q1 = CTC = ( 1 1
1 1 ), Q2 = 1 and Q12 =

(

0
0

)

.
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Figure 8.1 Control signal weight versus closed-loop pole

The Riccati equation becomes Q1 + AT S + S A− SBBT ST = 0. Let

S =
(

s1 s2

s2 s3

)

We get the following system of equations:

2s1 + 2s2 + 1− s2
1 = 0

s2 + s3 + 1− s1s2 = 0

1− s2
2 = 0

The solution is s1 = 3, s2 = s3 = 1. This gives the state feedback vector

L = BT S = ( 3 1 ) .

The poles of the closed-loop system are given by det(λI − A+ BL) = 0 which

gives λ1 = −1, λ2 = −1.

b. See Figure 8.2 and Matlab code below

A = [1 0; 1 0];

B = [1 0]’;

C = [1 1];

Q1 = C’*T;

Q2 = 1;

% 1. Using lqr

[L,S,E] = lqr(A,B,Q1,Q2)

% 2. Using care
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Solutions 8. Linear-Quadratic Control

[S,E,L] = care(A,B,Q1,Q2)

% simulate the system with initial conditions

sys = ss(A-B*L,B,C,0);

x0 = [1 1];

initial(sys,x0); grid
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Figure 8.2 Response to initial conditions

8.3 The loop gain is

L(sI − A)−1B = 6

(s+ 1)(s+ 2)
The Nyquist curve starts on the positive real axis and will approach the

origin along the negative real axis with phase −180○ as ω → ∞. This is

not consistent with an LQ-optimal loop gain, which will always remain at a

distance ≥ 1 from the critical point −1 and will hence have an asympototic

phase of −90○. Therefore, L cannot be an LQ-optimal state feedback vector.

8.4 The system has two unstable poles in 2 and 3. If the cost function should be

less than ∞ then the system must be stabilizable, i.e. all unstable poles must

be controllable (due to Q1 > 0). The controllability matrix is given by

Wc = (B AB) =
(−4 −12

8 24

)

which is a rank 1 matrix. Thus, only one of the modes is controllable meaning

that there is an uncontrollable, unstable mode, and hence, we can not make

the cost function less than ∞.

8.5 a. The cost function is J =
∫∞

0

(

xT(t)
(

1 0

0 2

)

x(t) + ρu2(t)
)

dt, ρ = 0.01, 10, 1000.
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Figure 8.3 Step responses for different weight on control signal.

b. See Figure 8.3 for step responses, and Matlab code below.

A = [1 3; 4 8]; B = [1; 0.1]; C = [0 1];

P = ss(A,B,C,0);

Q1 = [1 0; 0 2]; Q2_vector = [0.01 1 100];

clf

for i=1:length(Q2_vector)

[L,S,E] = lqr(P,Q1,Q2_vector(i));

% Calculating Lr (static gain to output should be 1)

Lr = 1/(C/(B*L-A)*B);

% Closed loop from r to u:

Gur = ss(A-B*L,B*Lr,-L,Lr);

% Closed loop from r to y:

Gyr = ss(A-B*L,B*Lr,C,0);

% Plotting step responses

subplot(3,2,i*2-1)

step(Gur)

axis([0 10 -Inf Inf])

title([’Control signal, Q_2=’ num2str(Q2_vector(i))])

subplot(3,2,i*2)
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step(Gyr)

axis([0 10 -Inf Inf])

title([’Output signal, Q_2=’ num2str(Q2_vector(i))])

poles{i} = E;

end

poles{:}

8.6 3) is the only case with a cost on the velocity x2. This makes the controller

try to avoid rapid variations in x1, so we get 3) − D), the only step response

without overshoot. The weight, Q2, on the control signal determines the speed

of the system. A low weight on the control signal gives a faster system since

we are allowed to use more control signal. This reveals 1) − C), 2) − A),
4) − B).

8.7 a. Weighting matrices Q1 =
(

1 0

0 0

)

and Q2 = η. The Riccati equation to be

solved with respect to S is

AT S + S A+ Q1 − SBQ−1
2 BT S = 0

Put

S =
(

s1 s2

s2 s3

)

,

which gives
(

0 0

s1 s2

)

+
(

0 s1

0 s2

)

+
(

1 0

0 0

)

− 1

η
·

(

s2
2 s2s3

s2s3 s2
3

)

= 0

We see, by insertion, that

s1 =
√

2 · η1/4

s2 = η1/2

s3 =
√

2 · η3/4

solves the Riccati equation.

b. The optimal state feedback is

L = Q−1
2 BT S = 1

η
· ( 0 1 )

(

√
2η1/4 η1/2

η1/2 √
2 · η−3/4

)

= 1

η
· (η1/2 √

2η3/4) = (η−1/2 √
2 · η−1/4)

The poles are the eigenvalues to A−BL. Put µ = η−1/4 [ L = ( µ2
√

2 · µ ) .

This gives

0 = det

(

s −1

µ2 s+
√

2 · µ

)

= s2 +
√

2µs+ µ2,

that is

s = − µ√
2
±

√

µ2

2
− µ2 = − µ√

2
± i ·

µ√
2
=

= − µ√
2
· (1± i) = − 1√

2 · η1/4 · (1± i)

If η is reduced, the distance between the poles and the origin will increase.

This means that the size of u(t) will increase.
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