FRTN10 Exercise 8. Linear-Quadratic Control

8.1

8.2

8.3

Consider the first-order unstable process

%(t) = ax(t) + u(t), a>0

a. Design an LQ controller u(¢) = —Lx(¢) that minimizes the criterion

o0

J= f (22(2) + pu?(t)) dt.

0

b. Do the design for different p using Matlab assuming a = 1 and plot the

position of the closed-loop pole as a function of p. Explain how the speed of
the system depends on p.

Consider the second-order system

x(t):(i g)x(t)+((1)>u(t)
y(8) = (1 1)x(2)

. Design an LQ controller u(¢) = —Lx(¢) that minimizes the criterion

o0

J= f (2() + u2(1)) .

0

What are the poles of the closed-loop system?

. Solve the same problem as in a. by

1. using lgr in Matlab.
2. using care to solve the algebraic Riccati equation in Matlab.

Also simulate the closed-loop system from the initial condition x(0) = (1 1).

Consider a process

i(t) = (‘01 _02>x(t) + (2)u(t)

Show that u(¢) = —Lx(¢) with
L=(2 -3)

can not be an optimal state feedback designed using linear quadratic theory
with the cost function

J = f (xT(t)le(t) + Q2u2(t)) dt

where @1, @2 > 0.
Hint: Sketch the Nyquist plot of the loop transfer function L(sI — A)~!B.



Exercise 8. Linear-Quadratic Control

8.4

8.5

8.6

Consider the system
(Y ) L
X = o 4 x 8 u
y= (1 1) x
One wishes to minimize the criterion
T
J(T) = f (=" () @1x(t) + Quu (1))
0

Is it possible to find positive definite weights @1 and @2 such that the cost
function J(T') < o0 as T' — c0?

We would like to control the following process with linear-quadratic optimal
control:

x(t) = [1 z] x(¢) + [0:.11] u(t)
y(?) (o 1] (%)

The penalty on x%(¢) should be 1, and the penalty on x2(¢) should be 2. For
u?(t) we will try different penalty values: p = 0.01, 1, 100.

. Determine the cost function for the three different cases.

. Assume that we want to add reference tracking so that y = r in

stationarity, using the control law u(¢) = L,r(¢) — Lx(t). In Matlab, calculate
the three different resulting controllers, calculate the resulting closed-loop
poles and simulate step responses from r to x9 and from r to u. Verify that
there is no static error.

Consider the double integrator

x(t) = [8 3]x(t)+ [(1)] u(t)
y(t) = [1 o] x(?)

A set of LQ controllers u(¢) = —Lx+ L,r have been designed. L was calculated
to minimize the cost function

J = fooo (xT(t)le(t) + Q2u2(t)> dt

and L, was chosen to give unit static gain from r to y. The four plots in
Figure 8.1l show the step responses of the closed-loop system for four different
combinations of weights, @1, @2. Pair the combinations of weights given below
with the step responses in Figure 8.1]
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Figure 8.1 Step responses for LQ-control of the system in Problem [8.6] with different weights

on @1, Q.
D 1 0
= =0.01
Q1 [0 O]’ Q2 =0.0
2) Lo
= =1
Q1 [O O]’ Q2
3 1 0
Q1—[0 1], Q=1
4)

8.7 (*) Consider the double integrator

£(t) = u(2).

with state-space representation

(0 (0
St
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where x = (£(t), £(¢)). You would like to design a controller using the criterion

[ CE0) +n- w2 dr

for some 5 > 0.

S1 S2
a. Show that S = [ ] with
S9 83

-<>‘1=\/§'771/4
sg = n'/?
33:\/5"73/4

solves the Riccati equation.

b. What are the closed-loop poles of the system when using this optimal state
feedback? What happens with the control signal if 5 is reduced?
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Solutions to Exercise 8. Linear-Quadratic Control

81 a. UsingA=a B=1 Q1 =1 Q2 =p, @12 =0 the Riccati equation becomes

8.2

28a+1—8Sp~ 18 =0

The positive solution is

S=ap+/(ap)’+p

and the optimal controller gain is given by

1
L=§=a+ a? + —.
p p

. See Matlab code below and Figure [8.1l Conclusion: Less weight on u gives a

faster system since we are allowed to use the control signal more, and vice
versa.

A=1;
B =1;
c=1;
P = ss(A,B,C,0);
Ql = 1;

rhovec = 0.001:0.001:0.5;
Evec = zeros(size(rhovec));

for i = 1:length(rhovec)
rho = rhovec(i);
[L,S,E] = 1qr(P,Ql,rho);
Evec(i) = E;

end

plot(rhovec, Evec)

xlabel (’Control signal weight’)
ylabel(’Closed-loop pole’)

grid

. Using y(¢) = Cx(t) we first rewrite the cost function as

J = foo(xT(t)CTCx(t) +u2(t))dt

from which we identify @ = CTC = (11), Q2 =1 and Q12 = ().
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Figure 8.1 Control signal weight versus closed-loop pole

The Riccati equation becomes @ + ATS + SA — SBBTST = 0. Let

S9 S3
We get the following system of equations:

231+232+1—s%=0
sg+ss+1—s159=0

1-— s% =0
The solution is s; = 3, sg = s3 = 1. This gives the state feedback vector
L=BTS=(3 1).

The poles of the closed-loop system are given by det(Al — A+ BL) = 0 which
gives A1 = —1, Ag = —1.

b. See Figure [8.2] and Matlab code below

A=1[10;10];
B =[10]";
Cc=1[11];

Ql = C'*T;
Q2 = 1;

% 1. Using lqr
[L,S,E] = 1qr(A,B,Q1,Q2)

% 2. Using care



8.3

8.4

8.5 a. The cost functionis J = f
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[S,E,L] = care(A,B,Q1,Q2)

% simulate the system with initial conditions
sys = ss(A-B*L,B,C,0);

x0 = [1 17;

initial(sys,x0); grid

Response to Initial Conditions
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Figure 8.2 Response to initial conditions

The loop gain is
6

s+ 1)(+2)

The Nyquist curve starts on the positive real axis and will approach the
origin along the negative real axis with phase —180° as w — oo. This is
not consistent with an LQ-optimal loop gain, which will always remain at a
distance > 1 from the critical point —1 and will hence have an asympototic
phase of —90°. Therefore, L cannot be an LQ-optimal state feedback vector.

L(sI—A)'B=

The system has two unstable poles in 2 and 3. If the cost function should be
less than oo then the system must be stabilizable, i.e. all unstable poles must
be controllable (due to @1 > 0). The controllability matrix is given by

W, = (B AB):(_84 _212>

which is a rank 1 matrix. Thus, only one of the modes is controllable meaning
that there is an uncontrollable, unstable mode, and hence, we can not make
the cost function less than co.

(xT(t) (0 0 ) x(t) + puz(t)> dt, p = 0.01, 10, 1000.
0
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Figure 8.3 Step responses for different weight on control signal.

b. See Figure [8.3] for step responses, and Matlab code below.

A
P

[13; 48]; B=1[1; 0.1]; C = [0 17;
ss(A,B,C,0);

Ql = [1 0; O 2]; Q2_vector = [0.01 1 100];

clf
for i=1:1ength(Q2_vector)
[L,S,E] = 1qr(P,Ql1,Q2_vector(i));

% Calculating Lr (static gain to output should be 1)
Lr = 1/(C/(B*L-A)*B);

% Closed loop from r to u:
Gur = ss(A-B*L,B*Lr,-L,Lr);

% Closed loop from r to y:
Gyr = ss(A-B*L,B*Lr,C,0);

% Plotting step responses

subplot(3,2,i*2-1)

step(Gur)

axis([0® 10 -Inf Inf])

title([’Control signal, Q_2=" num2str(Q2_vector(i))])
subplot(3,2,i*2)
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step(Gyr)
axis([0® 10 -Inf Inf])
title([’Output signal, Q_2=’ num2str(Q2_vector(i))])
poles{i} = E;
end
poles{:}

3) is the only case with a cost on the velocity xo. This makes the controller
try to avoid rapid variations in x1, so we get 3) — D), the only step response
without overshoot. The weight, @2, on the control signal determines the speed
of the system. A low weight on the control signal gives a faster system since
we are allowed to use more control signal. This reveals 1) — C), 2) — A),
4) — B).

10

. Weighting matrices @1 = ( ) and @2 = 5. The Riccati equation to be

00
solved with respect to S is

ATS + SA+Q;—SBQ;'BTS =0
(%)
S9 S3
which gives

0 0 0 s 1 0\ 1 [ s% sos3
+ + —_ . 9 = O
S1 Sg 0 s9 00 n \sas3 s3

We see, by insertion, that

s1= V2ol
sg = nl/2
9= V2Pl

solves the Riccati equation.

. The optimal state feedback is

1 apl/4 1/2

P2 e B
1
=5'(r71/2 Vot = (M2 V2l

The poles are the eigenvalues to A—BL.Put u = n~Y/* = L= (u? V2-p).
This gives

S -1
0 = det =s2+V2us + 2
(/uz S+\/§'ﬂ) o
that is
2
)z )z 5 7
§=—"_ =" 4. L=
2 Ve TR T T T A
u . 1 .
= —— 1:|:l, = —— ]_:l:l
e D= ()

If 5 is reduced, the distance between the poles and the origin will increase.
This means that the size of u(¢) will increase.
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