
FRTN10 Exercise 5. Multivariable Zeros, Singular Values

and Controllability/Observability

5.1 Consider the following system:
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a. Show that the system is neither controllable nor observable. Also determine

the uncontrollable and unobservable modes. (If you are not familiar with the

concept of modes, look it up in the textbook (Glad&Ljung)).

b. Determine the transfer function of the system and the order of a minimal

state-space realisation. How can this be related to the controllable and ob-

servable states of the system?

5.2 The following model of a heat exchanger was presented in the course book

(see Example 2.2):
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Here the first state represents the temperature of the cold water and the

second state is the temperature of the warm water.

a. Use Matlab to calculate the controllability Gramian.

b. What state direction is the hardest to control?

5.3 (*) In the first exercise session we were given a rough model of the pitch dynamics

of JAS 39 Gripen:
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Using Matlab:

a. Show that there is no scalar output signal that makes the system observable.

Hint: Use symbolic toolbox to determine a general C matrix and calculate

the observability matrix. For instance, the following lines of Matlab code may

help you:
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Exercise 5. Multivariable Zeros, Singular Values and Controllability/Observability

>> syms c1 c2 c3 c4 c5

>> C = [c1 c2 c3 c4 c5]

>> Wo = ...

b. Let the output be

y(t) =









1 0 0 0 0

0 1 0 0 0
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


x(t).

Which are the non-observable modes?

5.4 In Figure 5.1 and Figure 5.2 you see two different interconnections of the two

systems

P1 =
s+ 3

s+ 2
, P2 =

s+ 1

(s+ 3)(s+ 4)(s− 2)

One can notice that after multiplying the two systems we can cancel a pole and

a zero in p0 = −3. Usually it means that the whole system is not observable,

or not controllable. Which of these two situations are depicted in the systems

A and B in Figure 5.1 and Figure 5.2 respectively?

P1 P2

Figure 5.1 Block diagram for system A in problem 5.4.

P2 P1

Figure 5.2 Block diagram for system B in problem 5.4.

5.5 Consider the following transfer function matrix

G(s) =


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1

s+ 2
−

1
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1
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
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

a. Determine the pole and zero polynomials for this system. What is the least

order needed to realize the system in state-space form?

b. Find a state-space realization of the system.

c. Use Matlab to draw a singular value plot for the system. What is the L2-gain

of the system? (Hint: help sigma)

5.6 Consider the system

G(s) =


 1 1/s




with two inputs and one output.

a. Use Matlab to determine the singular values of the system at ω = 1 rad/s,

together with the input directions giving the maximum and minimum output

gains respectively.

2
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b. The derived input directions are complex. What does this mean? Explain why

it is logical that these input directions should give the smallest and highest

system gains respectively for this particular system.

5.7 The following is an idealized dynamic model of a distillation column:

G(s) =
1

75s+ 1




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
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


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

a. Using Matlab, plot the singular values of the process.

b. For the frequencies ω = 0, 0.1 rad/s, calculate the gains of the system in the

input directions d1 = [0.6713 0.7412]T and d2 = [1 0]T , i.e. the amplifica-

tion of the input di · sin(ωt) by the transfer matrix G(s).

c. Determine the minimum and maximum output gains respectively at ω = 0

rad/s as well as the input directions associated with them. Will the directions

depend on frequency for this particular system? Explain your answer.
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Solutions 5. Multivariable Zeros, Singular Values and Controllability/Observability

Solutions to Exercise 5. Multivariable Zeros, Singular

Values and Controllability/Observability

5.1 a. In Matlab, we may derive the controllability- and observability matrices using

>> Wc = ctrb(A,B)

Wc =

1 -1 1

1 -2 4

0 0 0

>> rank(Wc)

ans =

2

>> Wo = obsv(A,C)

Wo =

1 0 1

-1 0 -3

1 0 9

>> rank(Wo)

ans =

2

Since the system is in diagonal form we can see, using Theorem 3.1 in the

course book (Glad&Ljung), that the uncontrollable mode corresponds to the

third state (as that row in the B matrix is 0). By Theorem 3.2 in the course

book, the unobservable mode is determined to be the second state in a similar

fashion (the column of C equal to 0).

The system is illustrated in the block diagram in Figure 5.1. We can see that

the state x2 will not influence y, and is therefore not observable. We can also

see that the control signal u will not affect the state x3, and therefore this

state is not controllable.

b. The transfer function is simply

G(s) = C(sI − A)−1 B =
1

s+ 1

and the system can thus be represented as a minimal realization in state-

space form of order 1. Note that this corresponds to the first subsystem in

Figure 5.1 which is both observable and controllable.
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Figure 5.1

If we are only interested in the relationship between u and y, we can use the

resulting first-order transfer function G(s). However, the original third-order

state-space model contains additional information, as seen in Figure 5.1. The

second and third subsystems in this model may represent physical entities

of the plant that must be taken into account. If we need to influence x3 or

monitor x2, additional sensors or actuators are needed.

5.2 a. First of all, define the system in Matlab

>> A = [-0.21 0.2;0.2 -0.21];

>> B = 0.01*eye(2);

>> C = eye(2);

>> D = 0;

>> sys = ss(A,B,C,D);

The controllability Gramian is calculated using

>> W = gram(sys,’c’)

W =

0.0026 0.0024

0.0024 0.0026

b. Recall the formula from the lecture notes:

∫∞

0

pu(t)p2dt ≥ xT
1 W−1 x1

showing how much control effort it takes to reach the state x1.

To identify the hardest to control state direction, we calculate the eigenvalues

and the eigenvectors of W−1 :

[T L] = eig(inv(W))

T =

-0.7071 -0.7071
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-0.7071 0.7071

L =

1.0e+03 *

0.2000 0

0 8.2000

Apparently one eigenvalue of the inverse of the Gramian is almost 40 times

larger than the other. Hence one state direction is poorly controllable.

Inspection of the corresponding eigenvectors, i.e. the columns of T, shows that

the small eigenvalue correponds to a state direction where both temperatures

move in the same way, while the poorly controllable state direction correponds

to temperatures moving in opposite directions.

5.3 a. Continuing the code we get

>> syms c1 c2 c3 c4 c5

>> C = [c1 c2 c3 c4 c5];

>> Wo = [C;C*A;C*A^2;C*A^3;C*A^4];

>> det(Wo)

ans =

0

>> rank(Wo)

ans =

4

Since the system does not have full rank (5) we see that no matter how we

choose C (when it is a vector), the system can never be made observable. This

means that we need information from more than just one signal to make the

system observable.

b. Determine the eigenvectors of the system

>> [V,D]=eig(A)

V =

0 0.3333 0.4286 -0.0261 0.0206

0 0.6667 -0.8571 0.7973 -0.3916

1.0000 0.6667 0.2857 -0.0399 0.0196

0 0 0 0.6017 0

0 0 0 0 0.9197

...
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Rewrite the system in diagonal form using the change of variables x(t) =
V z(t)

ẋ(t) = V ż(t) = AV z(t) + Bu(t) [

ż(t) = V−1 AV z(t) + V−1 Bu(t) = Λz(t) + V−1 Bu(t)

y(t) = CV z(t)

where Λ is a diagonal matrix with the eigenvalues on the diagonal. Now that

we have the system in the wanted form, we can determine if there are any

columns in CV that are zero.

>> C*V

ans =

0 0.3333 0.4286 -0.0261 0.0206

0 0.6667 -0.8571 0.7973 -0.3916

The first state in z therefore corresponds to the unobservable mode. In the

original variables this is the third state:

>> V*[1;0;0;0;0]

ans =

0

0

1

0

0

So, the third state is the unobservable mode.

5.4 System A depicts the observable system. Obviously the problem is in the pole

p0 = −3. We control directly the plant P1, and we observe the output of

plant P2. It means that we observe the effect of the pole p0 = −3, but due to

pole-zero cancellation, we cannot control it.

Similarly for system B, we control the plant P2, and the pole p0 = −3 is

controllable, but the effect of that pole is cancelled by the zero in P1 and we

do not observe it. Hence the whole system is not observable.

5.5 a. The largest subdeterminant of the transfer function matrix is

(s+ 1)

(s+ 2)2
+

1

(s+ 2)2
=

1

(s+ 2)

Furthermore, the matrix elements in themselves are subdeterminants. The

pole polynomial, i.e. the least common denominator of all subdeterminants,

is then

p(s) = (s+ 2)

This means that the system has a pole in s = −2. The system can thus be

realized in state-space form of order 1.
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Figure 5.2 Singular value plot in Problem 5.5.

The largest possible subdeterminant was

1

(s+ 2)

The zero polynomial is thus just a constant and therefore the system does not

have any zeros.

b.

G(s) =

( 1
s+2

− 1
s+2

1
s+2

s+1
s+2

)

=

( 1
s+2

− 1
s+2

1
s+2

1− 1
s+2

)

=
1

s+ 2

(

1 −1

1 −1

)

+

(

0 0

0 1

)

=
1

s+ 2

(

1

1

)

( 1 −1 ) +

(

0 0

0 1

)

A state-space realization can now be written as

dx

dt
= −2x+ ( 1 −1 )u

y =

(

1

1

)

x+

(

0 0

0 1

)

u

c. The singular value plot (see Figure 5.2) is drawn using the command sigma.

The L2-induced gain ppGpp∞ is the largest singular value of G(iω) across all

frequencies ω , from the figure we can see that ppGpp∞ = 1 in this case. We

also see that the largest gain of this system is achieved at high frequencies.

5.6 a. To determine the frequency response at a certain frequency ω , it’s handy to

use the Matlab command freqresp. To calculate the singular values together

with the U and V matrices, use the function svd. The Matlab code can look

like this:
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>> s = tf(’s’);

>> G = [1 1/s];

>> [U,S,V] = svd(freqresp(G,1))

U =

1

S =

1.4142 0

V =

0.7071 0 + 0.7071i

0 + 0.7071i 0.7071

The maximum gain, corresponding to the highest singular value, is ob-

tained as the first element in S and is σ = 1.4142. The first column of

V , v1 = (0.7071 0.7071i)T , corresponds to the input direction that gives

the maximum gain σ . Since the system has two inputs and only one output,

there will always be an input direction that gives zero output (where the

inputs cancel each other). The second column of V gives us this direction,

v2 = (0.7071i 07071)T .

b. If the input signal is a sinusoid with frequency ω = 1 rad/s, the complex

numbers will correspond to a phase shift of this sinusoid. The input direction

giving the highest gain is v1 = [0.7071 0.7071i]T , meaning that the second

input has 90○ phase lead compared to the the first input.

The first input comes through the system unchanged; the second goes through

an integrator, causing a phase lag of 90○. Thus the input direction v1 =
[0.7071 0.7071i]T will cause the two sinusoids that sum up at the output to

be in phase; resulting in maximal gain.

If we instead use the lowest gain input direction v2 = [0.7071i 0.7071]T , the

second input will have a phase lag of 90○, causing a 180○ phase lag at the

output. The two signals will cancel at the output, resulting in minimal gain

(zero).

5.7 a. >> s = tf(’s’);

>> G = 1/(75*s+1)*[87.8 -86.4;108.2 -109.6];

>> sigma(G)

>> grid

See Figure 5.3 for the Matlab plot.

b. Calculate the frequency response at the given frequencies

>> Gfr1 = freqresp(G,0)

Gfr1 =
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Figure 5.3 Singular value plot for Problem 5.7

87.8000 -86.4000

108.2000 -109.6000

>> Gfr2 = freqresp(G,0.1)

Gfr2 =

1.5336-11.5022i -1.5092+11.3188i

1.8900-14.1747i -1.9144+14.3581i

The gain of a transfer matrix at a particular frequency ω is computed as

σ̄ (G(iω)) = sup
d ,=0

pG(iω)dp

pdp
. If we choose a particular input direction d0 then

the supremum disappears and the gain is given by
pG(iω)d0p

pd0p
.

Thus the gains are given by

pG(0)d1p

pd1p
=

√

(−5.1)2 + (−8.6)2
√

(0.6713)2 + (0.7412)2
=

10.0

1

pG(0)d2p

pd2p
= 139.3

pG(0.1i)d1p

pd1p
= 1.3

pG(0.1i)d2p

pd2p
= 18.4

They can also be calculated in Matlab using

>> d1 = [0.6713;0.7412];
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>> d2 = [1;0];

>> norm(Gfr1*d1),norm(Gfr1*d2),norm(Gfr2*d1),norm(Gfr2*d2)

ans =

9.9990

ans =

139.3416

ans =

1.3215

ans =

18.4159

c. Using Matlab:

>> [U,S,V] = svd(Gfr1)

U =

-0.6246 -0.7809

-0.7809 0.6246

S =

197.2087 0

0 1.3914

V =

-0.7066 -0.7077

0.7077 -0.7066

The maximum gain is σ = 197.2 and the minimum gain is σ = 1.39. The input

direction associated with the maximum gain is v1 = [−0.7066 0.7077]T .

The input direction giving the least gain is v2 = [−0.7077 − 0.7066]T .

These directions are constant for all frequencies. The reason is that the

denominators of all matrix elements are the same, which gives

G(iω) =
1

75iω + 1
G(0).

Let G(0) = UΣV∗. We then have G(iω) = U

(

1

75iω + 1
Σ

)

V∗, and we can

see that ω will only change the singular value matrix Σ, not the direction

matrices U and V .
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