
FRTN10 Exercise 2. System Representations and Stability

2.1 A system is given by

ẋ1 = −2x1 + x2 + u1

ẋ2 = −3x2 + u1 + 2u2

y1 = x1 + x2

y2 = 2x1 + u1

y3 = 2x2 + u2

Express the system in state-space form by determining the matrices (A, B, C, D).

2.2 A system with two inputs and one output is modeled by the differential

equation

ÿ+ a1 ẏ+ a2y = b11u̇1 + b12u1 + b21u̇2 + b22u2.

Find the transfer matrix.

2.3 A system has the following input-output relation:

y(t) =
∫ t

0

(t−τ )e−2(t−τ )u(τ )dτ

a. Determine �(t) (the open-loop impulse response) such that

y(t) =
∫ t

0

�(t−τ )u(τ )dτ

Also, if u(t) = r(t) − y(t), find the closed-loop transfer function Gc(s) such

that

Y (s) = Gc(s)R(s)

b. Is the closed-loop system input-output stable?

c. Use Matlab to plot the Bode diagram of the closed-loop system and use it to

estimate the L2 gain of the system.

2.4 In Figure 2.1, a feedback system is illustrated.

a. Determine the transfer function from disturbances v to the controlled output

z. This important function, called the sensitivity function, is denoted by S(s).
(Note: v is sometimes called process noise but in some literature also output

load disturbance).

Also determine the transfer function from reference r to output z. This func-

tion is called the complementary sensitivity function, and is denoted by T(s).
What is the transfer function from measurement noise n to output z, expressed

in S and T?
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Figure 2.1 System in Problem 2.4
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Figure 2.2

b. Figure 2.2 shows gain curves for the sensitivity function and the complemen-

tary sensitivity function. Which curve represents which function?

c. In which frequency region (roughly) is there good tracking of the reference

value?

d. In which frequency region (roughly) is there good attenuation of the measure-

ment noise, n?

2.5 Study the feedback control system in Figure 2.3, where the process, P(s), is

given by

P(s) = 1

(s+ 1)(s + 2)

The Bode diagram of P(s) is shown in Figure 2.4.

Three different controllers were designed

C1(s) = 10 C2(s) = 10
s+ 1

s
C3(s) = 10

s+ 1

s
e−0.1s

where the last one has a small delay.
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Figure 2.3 System in Problem 2.5
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Figure 2.4 Bode diagram for P(s) in Problem 2.5.

a. Figure 2.5 shows sensitivity functions, corresponding to the three different

control designs C1−C3. Combine the controllers C1−C3 with the sensitivity

functions A− C.
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Figure 2.5 Sensitivity functions for Problem 2.5.
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Exercise 2. System Representations and Stability

b. Figure 2.6 shows responses to a step load disturbance, d, corresponding to

the three different control designs C1 − C3. Combine the controllers C1 − C3

with the load step responses I − I I I.
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Figure 2.6 Step Load Disturbance Responses for Problem 2.5.

2.6 Consider a water tank with a separating wall. The wall has a hole at the

bottom, as can be seen in figure 2.7.

Figure 2.7

The input signals are the inflows of water to the left, u1, and the right, u2,

halves of the tank, measured in cm3/s. The water levels are denoted by h1

cm and h2 cm, respectively. The outflow y cm3/s is considered proportional

to the water level in the right half of the tank:

y(t) = αh2(t)

The flow between the tank halves is proportional to the difference in level:

f (t) = β(h1(t) − h2(t))

(flow from left to right)

The signals hi, ui and y are thought of as deviations from a linearization

point, and may therefore be negative. Assume that the two tank halves each

have area A1 = A2 = 1 cm2.
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Exercise 2. System Representations and Stability

a. Write the system in state-space form.

b. What is the transfer matrix from (u1 u2 )T to y?

c. What is the L2 gain of the system when α = β = 1? (Hint: Use Matlab.)

d. It turns out that the L2 gain is larger than one. How is this possible? Can

there be more water coming out from the tank than what is poured into it?

Have we invented a water-producing device? Explain what is wrong here!
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Solutions 2. System Representations and Stability

Solutions to Exercise 2. System Representations and

Stability

2.1 A state-space representation of the system is given by

[

ẋ1

ẋ2

]

=
[−2 1

0 −3

] [

x1

x2

]

+
[

1 0

1 2

] [

u1

u2

]





y1

y2

y3



 =





1 1

2 0

0 2





[

x1

x2

]

+





0 0

1 0

0 1





[

u1

u2

]

2.2 Laplace transformation of the differential equation gives

Y (s) = (b11s+ b12)
(s2 + a1s+ a2)

U1(s) +
(b21s+ b22)
(s2 + a1s+ a2)

U2(s)

The transfer matrix becomes

[

b11s+ b12

s2 + a1s+ a2

b21s+ b22

s2 + a1s+ a2

]

2.3 a. The equation can be written as

y = � ∗ u (2.1)

where �(t) = te−2t, t ≥ 0. Taking the Laplace transform of (2.1) gives with

u = r− y

Y (s) = 1

(s+ 2)2 (R(s) − Y (s))

Y (s) = 1

s2 + 4s+ 5
R(s)

b. The transfer function has poles in

s1 = −2+ i

s2 = −2− i

Since all poles have negative part the system is input-output stable.

Another way of checking stability of a second order system with characteristic

equation s2 + a1s+ a2 is to use the Routh-Hurwitz criterion, which says that

the system is stable if a1, a2 > 0.

c. Since the system is stable, the L2 gain is given by the supremum of the

transfer function gain, so we want to find the peak of the Bode amplitude

plot.
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Solutions 2. System Representations and Stability
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Figure 2.1 Bode diagram for Problem 2.3(c).

>> s = tf(’s’);

>> G = 1 / (s^2 + 4*s + 5);

>> bode(G)

Alternatively, one can find the frequency that maximizes the gain by the

following reasoning: Since it is a second order system, it can be written as

Gc(s) =
K

s2 + 2ζωs +ω2

In our case ζ = 2/
√

5 ( 0.9. This means that the system is well damped and

that it does not have a resonance peak in the gain curve. Since the gain is

decreasing with frequency, the maximum gain can thus be found at ω = 0.

pGc(i · 0)p = 1

5

2.4 a.

S(s) = 1

1+ C P
= s3 + 2s2 + s

s3 + 2s2 + 2.4s+ 1.4
=

= (s+ 1)(s2 + s)
(s+ 1)(s2 + s+ 1.4) =

s2 + s

s2 + s+ 1.4

Remark: Notice that we have a 3rd order system (with a 1st order controller

and 2nd order plant), but the transfer functions S(s) is only of 2nd order!

Looking at the block-diagram of the system one can clearly see the pole–zero
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Solutions 2. System Representations and Stability

cancellation of the term (s+1) for P ·C. These kind of pole-zero cancellations

imply loss of either observability or loss of controllability, which will be studied

later in the course.

T(s) = C P

1+ C P
= 1.4(s+ 1)

s3 + 2s2 + 2.4s+ 1.4
= 1.4

s2 + s+ 1.4

Remark: Also for T there has been a pole-zero cancellation of (s + 1), but a

corresponding cancellation does not appear in for instance Gd−>z = P
1+PC .

The transfer function from n to z is T(s) (the minus sign can be ignored since

we could just as well say that the unknown noise is given by −n). This means

that the reference and the measurement noise have the same effect on the

output.

b. We know that S(s) is the transfer function from load disturbance to output.

Since the control system should remove the effects of load disturbances, which

often are of low frequency character, it would seem reasonable if the curve

representing S(s) decreases as we move to the left. This corresponds to the

upper curve.

We could also look at the function S(s) that we just determined. We see that

lim
s→0

S(s) = 0

Comparing with the upper curve, which has a gain that goes to zero for low

frequencies, we conclude that this represents the sensitivity function.

c. In order to have good tracking of the reference value, we want the gain

from reference to output to be close to one. Looking at the gain curve of the

complimentary transfer function T we see that for ω < 1, we have T ( 1,

resulting in good tracking of the reference value.

Additional comments: At the same time, we want to be insensitive to

process noise and measurement noise, i.e. we want the gain to be as small as

possible for these two signals.

The transfer function from process noise to output is S, while T is the transfer

function of both reference values and measurement noise to the output. S and

T can not be small at the same frequencies, due to the fact that

S(s) + T(s) = 1

1+ C(s)P(s) +
C(s)P(s)

1+ C(s)P(s) = 1

Thus, we need to think about the frequency character of these signals, and

compare with the shapes of the transfer functions: Process noise and reference

signals are often of low frequency, so we want to have S ( 0 and T ( 1 at low

frequencies. Measurement noise is most often of high frequency, so we want

to have T ( 0 at high frequencies.

d. At ω > 1 T is small, resulting in good attenuation of measurement noise.

(Do you see how the “speed” of control relates to the impact of measurement

noise?)
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Solutions 2. System Representations and Stability

2.5 a. The sensitivity function is given by S = 1
1+PC

, so S is small at frequencies

where PC is large. The stationary gain of P is finite. C2 and C3 both have

integral action and infinite stationary gain. Thus, for these controllers, S will

go to zero as ω → 0. C1, being a pure P-controller, has a finite stationary

gain. S will then also have a finite stationary gain.

C2 and C3 are PI-controllers, but C3 has a delay which will introduce extra

phase loss. This decreases the phase margin and therefore introduces a higher

sensitivity peak. Thus, we have: C1 → A, C2 → C, and C3 → B.

b. Since controller C1 does not have integral action, we will get a stationary

error in the response to a constant load disturbance, d. The response using

the delayed controller C3 will be less damped than the response using the

PI-controller because of the smaller phase margin, C2. This gives: C1 → I I,

C2 → I, and C3 → I I I.

2.6 a. If Vi is the water volume in tank i, then it follows from mass balance that

V̇1 = A1 ḣ1 = (u1 − f ), V̇2 = A2 ḣ2 = (u2 + f − y),

i.e., with h = [ h1 h2 ]T it follows that

ḣ =
(

− 1
A1

β 1
A1

β

1
A2

β − 1
A2
(β +α)

)

h+
(

1
A1

0

0 1
A2

)

u

y = ( 0 α ) h

b.

G(s) = 1

s2 + (2β +α)s+αβ
(αβ α(s+ β) )

c. Since the system is stable, the L2 gain can be computed in Matlab as:

>> s = tf(’s’);

>> G = 1/(s^2+3*s+1)*[1 s+1];

>> P = norm(G, inf)

The L2 gain is
√

2.

d. The problem is that if v is a signal corresponding to a mass flow, then the

L2-norm of that signal does not correspond to total accumulated mass flow:

ppvpp2 =
√

∫∞

−∞
pv(t)p2dt ,= total mass flow =

∫∞

−∞
v(t)dt.

As an example, consider the following signals:

v1(t) =
{

1 if 0 ≤ t ≤ 1

0 if t > 1

v2(t) =
{

2 if 0 ≤ t ≤ 0.5

0 if t > 0.5.
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Solutions 2. System Representations and Stability

Both corresponded to a total flow of 1 unit of mass, however their L2-norms

are different, 1 respectively
√

2.

In many contexts, however not quite in this one, the L2-norm of a signal has

a natural interpretation as the square root of signal energy.
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