
FRTN10 Exercise 1. Control in Matlab

This exercise is intended to give a basic introduction to Matlab. The main focus will

be on the use of Control System Toolbox for control system analysis and design. This

toolbox will be used extensively during the upcoming exercises and laboratories in

the course. A short Matlab reference guide and a guide to the most commonly used

commands from Control System Toolbox can be found at the end of this exercise.

Getting started

Matlab is started by issuing the command

> matlab

which will bring up a Java-based interface with three different frames showing the

current directory, your defined variables, and the Matlab command window. This gives

a good overview, but may be slow.

An alternative way to start Matlab is by the command

> matlab -nodesktop

which will only open up the command window. You can then use the commands ls

and whos to examine the current directory and your defined Matlab variables.

All Matlab commands have a help text, which is displayed by typing

>> help <command>

Try for example

>> help help

Use the help command frequently in the following exercises.

Matrices and system representations

Matrices in Matlab are created with the following syntax

>> A = [1 2; 3+i 4]

A =

1.0000 2.0000

3.0000 + 1.0000i 4.0000

with semi-colons being used to separate the lines of the matrix. The conjugate trans-
pose of a matrix is written as

>> A’

ans =

1.0000 3.0000 - 1.0000i

2.0000 4.0000
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Exercise 1. Control in Matlab

1.1 Consider the following state-space model describing the dynamics of an in-

verted pendulum
dx

dt
=
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u(t)

y(t) =
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 0 1



 x(t)

(1.1)

Enter the system matrices A, B, and C in Matlab and use the command eig

to determine the poles of the system.

In Control System Toolbox, the basic data structure is the linear time-invariant (LTI)

model. There is a number of ways to create, manipulate and analyze models. Some

operations are best done on the LTI system, and others directly on the matrices of the

model.

1.2 Define an LTI model of the pendulum system with the command ss. Use the

command tf to determine the transfer function of the system.

1.3 Zeros, poles and stationary gain of an LTI model are computed with the

commands zero, pole and dcgain, respectively. Use these commands on the

inverted pendulum model. Compare with 1.1.

The command tf is used to create an LTI model from a transfer function. This is done
by specifying the coefficients of the numerator and denominator polynomials, e.g. to
specify the transfer function P(s) = 1/(2s+ 1) you can use

>> P = tf(1, [2 1]);

Often it is most convenient to first define the variable s as

>> s = tf(’s’);

and then define the transfer functions in terms of s, i.e.,

>> P = 1 / (2*s + 1);

To include a time delay of 0.5 s in P(s) you can use

>> P = 1 / (2*s + 1) * exp(-0.5*s);

or alternatively, after having defined P = 1 / (2*s + 1); you can set the property

InputDelay,

>> P.InputDelay = 0.5;

To display all properties of an LTI model and their respective values, type

>> get(P)

1.4 Define an LTI model of the continuous-time transfer function

P(s) =
1

s2 + 0.6s+ 1
· e−1.5s (1.2)

and use the commands step, nyquist, and bode to plot time and frequency

responses of the system. Also use the command pzmap to plot the pole-zero

map. Is the system stable? Will the closed-loop system be stable if unit gain

negative feedback is applied?
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Exercise 1. Control in Matlab

State feedback example

Now return to the model of the inverted pendulum (1.1). We want to design a state-

feedback controller

u(t) = −Lx(t)

such that the closed loop system gets the characteristic equation

s2 + 1.4s+ 1 = 0

1.5 Is the system controllable? Use the command ctrb to compute the controlla-

bility matrix. Then use the command place to determine the state-feedback

vector L.

Connecting systems

LTI systems can be interconnected in a number of ways. For example, you may

add and multiply systems (or constants) to achieve parallel and series connections,

respectively. Assume that the system (1.2) without time delay is controlled by a PD

controller, C(s) = K(1 + sTd), with K = 0.5 and Td = 4, according to the standard

block diagram to the left in Figure 1.1:

yuc

l
u

ΣΣΣ

−1

+

–

P(s)C(s) SYS1

SYS2

Figure 1.1 A closed-loop control system.

1.6 Define an LTI model of the controller, C(s). Compute the amplitude margin

and phase margin for the loop transfer function. Use the Matlab command

margin.

To obtain the closed loop transfer function for a feedback interconnection of sys-

tems it is best to use to command feedback. To obtain the transfer function in

the block diagram to the right in Figure 1.1 you write feedback(SYS1,SYS2). Note

the sign conventions. Using feedback is more numerically stable than just writing

SYS1/(1 + SYS1*SYS2).

To find the transfer function from the set point uc to the output y for the system

in the left of Figure 1.1, you identify that SYS1 corresponds to P(s)C(s) and SYS2

corresponds to 1.

1.7 Compute the transfer function for the closed-loop system, both using the

feedback command and by direct computation (use minreal to simplify) ac-

cording to the formula

Gcl(s) =
P(s)C(s)

1+ P(s)C(s)
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Exercise 1. Control in Matlab

1.8 Plot the step response of the closed-loop system. What is the stationary gain

from uc to y?

1.9 The systems you have seen so far have been SISO (single-input, single-

output) systems. In this course we will also work with MIMO (multiple-input,

multiple-output) systems. This problem gives you an example of a MIMO

system.

A rough model for the pitch dynamics of a JAS 39 Gripen is given by
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(1.3)

Enter this system into Matlab using the ss command and determine if the

system is stable/controllable/observable? What is your conclusion from this

analysis?

What is the transfer function from the second input (the elevator rudder

command) to the first output (the pitch rate)?

1.10 In Matlab, a transfer function can be represented either in tf form, corre-

sponding to G1(s) and G3(s) below, or in zpk form, corresponding to G2(s)
and G4(s).

Calculate the poles of the following systems

G1(s) =
1

s3 + 3s2 + 3s+ 1

G2(s) =
1

(s+ 1)3

During calculations, numerical round-off errors can arise, which can lead to

changed dynamics of the system. Calculate the poles of the following systems

where one coefficient has been modified.

G3(s) =
1

s3 + 2.99s2 + 3s+ 1

G4(s) =
1

(s+ 0.99)3

In view of your results, discuss which format is numerically better.

1.11(*) Consider the following state-space model of a system

dx

dt
=
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(1.4)

Is the system observable? Is the system controllable? Motivate your answer

by calculations, but also with an insight how the system behaves.

4



Exercise 1. Control in Matlab

1.12(*) Given a mass-spring system in state-space form without a damper with m =
0.5 kg and k = 10 N/m, compute the transfer function of the system using

the commands ss and zpk. Design a PID controller such that the closed-loop

system gets the characteristic equation

s3 + s2(2ζω +ω) + s(ω2 + 2ζω2) +ω3 = 0

dx

dt
=


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−k/m 0
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0

1/m









u(t)
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

 1 0
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 x(t)

(1.5)

As design parameters use ω = 1 and ζ = 0.4 as start values. Then try

different values of ω and ζ , such that during a step response, the settling

time is less than 1.0 seconds and the maximum overshot is less than 15%. The

settling time is defined as the minimum time T such that 1−p < y(t) < 1+p

for all t > T where y is the step response and p can be 5%.

1.13(*) Given a transfer function for the following system

P(s) =
3− s

(s+ 1)(s+ 2)

Compute a state-space realization using the command ssdata. Is the system

controllable? Design a state feedback controller, such that the closed-loop

system gets the characteristic equation

s2 + 5.6s+ 16 = 0

Simulate a step response of the closed-loop system. What is the static gain?

What is the system called when the step response starts “in the wrong direc-

tion”? How can we directly see this property in the transfer function of the

process?
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Exercise 1. Control in Matlab

Quick Matlab Reference

Some Basic Commands

Note: the command syntax is case-sensitive!

help <command> display the Matlab help for <command>.

who lists all of the variables in your matlab workspace.

whos list the variables and describes their matrix size.

clear deletes all matrices from active workspace.

clear x deletes the matrix x from active workspace.

save saves all the matrices defined in the current session into the

file matlab.mat.

load loads contents of matlab.mat into current workspace.

save filename saves the contents of workspace into filename.mat

save filename x y z saves the matrices x, y and z into the file titled filename.mat.

load filename loads the contents of filename into current workspace; the file

can be a binary (.mat) file or an ASCII file.

! the ! preceding any unix command causes the unix command

to be executed from matlab.

Matrix commands

[ 1 2; 3 4] create the matrix









1 2

3 4









.

zeros(n) creates an n $ n matrix whose elements are zero.

zeros(m,n) creates an m-row, n-column matrix of zeros.

ones(n) creates an n $ n square matrix whose elements are 1’s

ones(m,n) creates an m $ n matrix whose elements are 1’s.

ones(A) creates an m $ n matrix of 1’s, where m and n are based on the

size of an existing matrix, A.

zeros(A) creates an m $ n matrix of 0’s, where m and n are based on the

size of the existing matrix, A.

eye(n) creates the n $ n identity matrix with 1’s on the diagonal.

A’ (complex conjugate) transpose of A

diag(V) creates a matrix with the elements of V on the diagonal.

blkdiag(A,B,C) creates block matrix with the matrices A, B, and C on the diagonal

6



Exercise 1. Control in Matlab

Plotting commands

plot(x,y) creates an Cartesian plot of the vectors x & y.

stairs(x,y) creates a stairstep of the vectors x & y.

semilogx(x,y) plots log(x) vs y.

semilogy(x,y) plots x vs log(y)

loglog(x,y) plots log(x) vs log(y).

grid creates a grid on the graphics plot.

title(’text’) places a title at top of graphics plot.

xlabel(’text’) writes ’text’ beneath the x-axis of a plot.

ylabel(’text’) writes ’text’ beside the y-axis of a plot.

gtext(’text’) writes text according to placement of mouse

hold on maintains the current plot in the graphics window while ex-

ecuting subsequent plotting commands.

hold off turns off the ’hold on’ option.

print filename -dps writes the contents of current graphics to ’filename’ in

postscript format.

Misc. commands

length(x) returns the number elements in a vector.

size(x) returns the size m(rows) and n(columns) of matrix x.

rand returns a random number between 0 and 1.

randn returns a random number selected from a normal

distribution with a mean of 0 and variance of 1.

rand(A) returns a matrix of size A of random numbers.

fliplr(x) reverses the order of a vector. If x is a matrix,

this reverse the order of the columns in the matrix.

flipud(x) reverses the order of a matrix in the sense of

exchanging or reversing the order of the matrix

rows. This will not reverse a row vector!

reshape(A,m,n) reshapes the matrix A into an m $ n matrix

from element (1,1) working column-wise.

squeeze(A) remove empty dimensions from A

A.x access element x in the struct A
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Exercise 1. Control in Matlab

Some useful functions from Control System Toolbox

Do help <function> to find possible input and output arguments.

Creation and conversion of LTI models.

ss - Create or convert to a state-space model.

tf - Create or convert to a transfer function model.

zpk - Create or convert to a zero/pole/gain model.

ssdata etc. - Extract data from an LTI model.

set - Set/modify properties of LTI models.

get - Access values of LTI model properties.

minreal - Minimal realization and pole/zero cancellation.

ss2ss - State coordinate transformation.

canon - State-space canonical forms.

ctrlpref - Open GUI for setting Control System Toolbox Preferences.

Model dynamics.

pole - System poles.

zero - Zeros and gain of SISO system.

tzero - Invariant zeros of MIMO system.

pzmap - Pole-zero map.

covar - Covariance of response to white noise.

Time response.

step - Step response.

impulse - Impulse response.

initial - Response of state-space system with given initial state.

lsim - Response to arbitrary inputs.

ltiview - Response analysis GUI.

Frequency response.

bode - Bode plot of the frequency response.

margin - Bode plot with phase and gain margins.

sigma - Singular value plot.

nyquist - Nyquist plot.

nichols - Nichols plot.

dcgain - Steady state (DC) gain.

System interconnections.

+ and - - Add and subtract systems (parallel connection).

* - Multiplication of systems (series connection).

/ and \ - Division of systems (right and left, respectively).

inv - Inverse of a system.

[ ] - Horizontal/vertical concatenation of systems.

feedback - Feedback connection of two systems.

Classical design tools.

rlocus - Root locus.

place, acker - Pole placement (state feedback or estimator).

estim - Form estimator given estimator gain.

reg - Form regulator given state-feedback and estimator gains.

LQG design tools.

lqr - Linear-quadratic (LQ) state-feedback regulator.

lqry - LQ regulator with output weighting.

lqe - LQ estimator.

kalman - Kalman estimator.

lqgreg - Form LQG regulator given LQ gain and Kalman estimator.

Matrix equation solvers.

lyap - Solve continuous Lyapunov equation.

care - Solve continuous algebraic Riccati equation.
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Solutions 1. Control in Matlab

Solutions to Exercise 1. Control in Matlab

1.1 >> A = [0 1; 1 0];

>> B = [1 0]’;

>> C = [0 1];

>> D = 0;

>> eig(A)

ans =

-1

1

1.2 >> sys = ss(A,B,C,D);

>> tf(sys)

Transfer function:

1

-------

s^2 - 1

1.3 >> zero(sys)

ans =

Empty matrix: 0-by-1

>> pole(sys)

ans =

-1

1

>> dcgain(sys)

ans =

-1

1.4 >> s = tf(’s’);

>> P = 1/(s^2+0.6*s+1)

Transfer function:

1

---------------

s^2 + 0.6 s + 1

>> P.InputDelay = 1.5

Transfer function:

1

exp(-1.5*s) * ---------------

s^2 + 0.6 s + 1
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>> bode(P)

>> grid

>> nyquist(P)

>> pzmap(P)

>> step(P)

As seen in the pole-zero map, the open-loop system is stable, as also indicated

by the step response. The Bode and Nyquist plots show that the closed-loop

system will be unstable.

1.5 >> Wc = ctrb(A,B);

>> rank(Wc)

ans =

2

Since the controllability matrix has full rank, the system is controllable.

>> p=[1 1.4 1];

>> L=place(A,B,roots(p))

L =

1.4000 2.0000

1.6 P = 1/(s^2+0.6*s+1);

>> C = 0.5*(1+4*s);

>> margin(C*P)

The amplitude margin is infinite, whereas the phase margin is 101○.

1.7 >> CLSYS = feedback(C*P,1)

Transfer function:

2 s + 0.5

-----------------

s^2 + 2.6 s + 1.5

>> CLSYS = minreal(C*P/(1+C*P))

Transfer function:

2 s + 0.5

-----------------

s^2 + 2.6 s + 1.5

1.8 >> step(CLSYS)

>> dcgain(CLSYS)

ans =

0.3333

1.9 >> A=[-1 1 0 -1/2 0; 4 -1 0 -25 8; 0 1 0 0 0; 0 0 0 -20 0; 0 0 0 0 -20];

>> B=[0 0; 3/2 1/2; 0 0; 20 0; 0 20];

>> C=[0 1 0 0 0; 0 0 1 0 0];

>> pitch_dynamics=ss(A,B,C,[0 0; 0 0]);

>> pole(pitch_dynamics)

ans =
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0

1.0000

-3.0000

-20.0000

-20.0000

>> rank(ctrb(pitch_dynamics))

ans =

5

>> rank(obsv(pitch_dynamics))

ans =

4

We see that the system is unstable. This means that without some type of

control, the plane will crash. Fortunately, the system is controllable, which

means that it is possible to stabilise the aircraft with the given actuators.

However, since we do not have observability, we need to have some other

combination of sensors if we to use feedback from observed states.

To get the transfer function, we use

>> G=tf(pitch_dynamics)

Transfer function from input 1 to output...

1.5 s^2 - 468.5 s - 510

#1: ------------------------

s^3 + 22 s^2 + 37 s - 60

1.5 s^2 - 468.5 s - 510

#2: ----------------------------

s^4 + 22 s^3 + 37 s^2 - 60 s

Transfer function from input 2 to output...

0.5 s^2 + 170.5 s + 170

#1: ------------------------

s^3 + 22 s^2 + 37 s - 60

0.5 s^2 + 170.5 s + 170

#2: ----------------------------

s^4 + 22 s^3 + 37 s^2 - 60 s

>> G(1,2) % To output 1 from input 2 (note the order of indexing)

Transfer function:

0.5 s^2 + 170.5 s + 170

------------------------

s^3 + 22 s^2 + 37 s - 60

1.10 >> G1 = 1/(s+1)^3

Transfer function:

1

---------------------

s^3 + 3 s^2 + 3 s + 1

>> pole(G1)
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ans =

-1.0000

-1.0000 + 0.0000i

-1.0000 - 0.0000i

>> G2 = zpk(1/(s+1)^3)

Zero/pole/gain:

1

-------

(s+1)^3

>> pole(G2)

ans =

-1.0000

-1.0000 + 0.0000i

-1.0000 - 0.0000i

>> G3 = 1/(s^3+2.99*s^2+3*s+1);

>> pole(G3)

ans =

-1.0888 + 0.2131i

-1.0888 - 0.2131i

-0.8124

>> G4 = 1/(s+0.99)^3;

>> pole(G4)

ans =

-0.9900 + 0.0000i

-0.9900 - 0.0000i

-0.9900

We see that the same small modification in a parameter, causes larger changes

in the dynamics when the system is represented as G3. The transfer function

form of G4 (three poles in the same spot as for G2), which can be kept with

the zpk command, is in general better numerically compared to the form in

which G3 is represented (the same form as the command tf gives).

1.11 >> Wo = obsv(A,C)

ans =

3 4

-3 -4

>> rank(Wo)

ans =

1
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>> rank(ctrb(A,B))

ans =

1

Since neither the observability matrix nor the controllability matrix has full

rank, the system is neither observable nor controllable. It can be seen di-

rectly from the state equations, where we have two states that are completely

discoupled from each other and have the same eigenvalue. This means that

evolution of the states will look exactly the same for any control signal u(t)
(assuming that the initial state is at the origin). Therefore we will never be

able to control these states arbitrarily. We will only be able to control them

along some controllable subspace. The same goes for the observability.

1.12 The transfer function for the mass-spring system will be

>> zpk(ss(A,B,C,D))

Zero/pole/gain:

2

-----------

(s^2 + 20)

The transfer function of a PID controller is

R =
K(sTi + 1+ s2TdTi)

sTi

and the closed-loop transfer function is

Gcl(s) =
R(s)P(s)

1+ R(s)P(s)
=

2K(s2Td + s+ 1/Ti)

s3 + s22KTd + s(20+ 2K) + 2K/Ti

The closed-loop characteristic equation is then

s3 + s2(2KTd) + s(20+ 2K) + 2K/Ti = 0

Identify the coefficients and solve for K , Ti and Td as functions of ω and ζ :

K = 0.5(ω2 + 2ζω2 − 20)

Ti =
2K

ω3

Td =
2ζω +ω

2K

The closed-loop system is then

>> G_cl = feedback(R*P,1);

>> step(G_cl)

The specification is met for many different choices of ω and ζ . One choice can

be ω = 6 and ζ = 0.7.
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1.13 >> s = tf(’s’);

>> P = (3-s)/((s+1)*(s+2));

>> [A,B,C,D] = ssdata(P);

>> rank(ctrb(A,B))

ans =

2

>> p = [1 5.6 16];

>> L = place(A,B,roots(p));

The system is controllable, since the controllability matrix has full rank.

With the control law u(t) = −Lx+ r, the closed-loop system get the following

appearance

>> A_cl = A-B*L;

>> B_cl = B;

>> C_cl = C;

>> D_cl = 0;

>> G_cl = ss(A_cl,B_cl,C_cl,D_cl);

>> step(G_cl)

>> dcgain(G_cl)

ans =

0.1875

The system is non-minimum phase, which we can see directly since the process

has a zero in the right half plane.
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