
Multivariable Control

Laboratory Session 3

LQG Control of a Rotating Crane1

Department of Automatic Control

Lund University

Figure 1 The crane used in the laboratory session

Preparations

• Read Chapters 9.1–9.4 in Glad & Ljung, Control Theory — Multivariable and

Nonlinear Methods.

• Read through this lab manual carefully.

• Do Pre-lab assignments 1–6 in the lab manual.

1. Introduction

In this laboratory session we will design both LQ and LQG controllers for a crane
with a load. The control objective is to make the load follow a circular orbit and at
the same time keep the cart close to a reference position. Different design properties
will be evaluated using Matlab/Simulink and a satisfying design will be tried on a
real crane.

1Written by Per-Ola Larsson, latest update October 31, 2016.

1



ll

θ

ψ

px

py

pz

Load

Traverse

Cart position Control
directions

Figure 2 Crane layout and coordinates. The cart position, i.e., the pivot point of the
crane load, can be moved in the (px, py)-plane. The control objective is to keep the load
rotating in a circular orbit while having the cart at a certain position.

2. Physical modeling of the crane

In the use of linear-quadratic-Gaussian (LQG) control, we design the state feedback
and Kalman filter using a model of the process. The more accurate model, the better
control we get.

Modelling of the crane and load can be done using Lagrange mechanics. Introduce
the following system coordinates, as in Figure 2,

• cart position px(t), py(t), pz(t)

• load angles θ(t) and ψ(t).

Assuming that the load movements do not affect the position of the cart1, gives the
following non-linear equations of motions

2lθ̇(t)ψ̇(t) cos θ(t) + p̈y(t) cosψ(t)− p̈x(t) sinψ(t) + lψ̈(t) sin θ(t) = 0

lθ̈(t)−
1

2
lψ̇2(t) sin 2θ(t) + g sin θ(t) + p̈y sinψ(t) cos θ(t)

+ p̈x(t) cosψ(t) cos θ(t) = 0.

The LQG control framework assumes a linear time-invariant model of the system,
therefore we need to linearize our equations. Assuming that we want the cart to be
positioned at the origin of our coordinate system, the specified trajectory can be

1When is this almost true? What approximations have we done?

2



expressed using the system coordinates and its derivatives as































py(t)

ṗy(t)

px(t)

ṗx(t)

θ(t)

θ̇(t)

ψ(t)

ψ̇(t)































=































0

0

0

0

θo

0

ωot

ωo































.

For a certain load length l and angle θo we must have a certain rotational velocity2,
i.e., ωo. This constraint can be derived using simple physics to

ωo =

√

g

l cos θo
, (1)

where g is the gravitational constant. Thus, the linearization trajectory depends on
this constraint, and can not be chosen arbitrarily.

Linearizing the equations of motions around the trajectory and letting the acceler-
ations in px- and py-directions be control inputs, gives a time-varying system. The
states are the deviations from the nominal trajectory, i.e.,

























































∆ṗy

∆p̈y

∆ṗx

∆p̈x

∆θ̇

∆θ̈

∆ψ̈

























































=

























































0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 s1 0 s2

0 0 0 0 0 s3 0

















































































































∆py

∆ṗy

∆px

∆ṗx

∆θ

∆θ̇

∆ψ̇

























































+

























































0 0

0 1

0 0

1 0

0 0

−b cosψ(t) −b sinψ(t)

a sinψ(t) −a cosψ(t)

































































∆ux

∆uy







 , (2)

where ψ(t) = ωot and

s1 = ω2

o cos(2θo)−
g

l
cos θo a =

1

l sin θo

s2 = ωo sin 2θo b =
cos θo
l

s3 = −2ωo cot θo.

2You might want to try this on your own. Try to make a pendulum go in a circular orbit with a
constant angle θo and at the same time increase the rotational velocity.

3



You can recognize e.g., the double integrators for the positions and velocities in px-
and py-directions, and the integrator for θ(t) in the system matrix.

Since we need a linear time-invariant system to design a standard LQ controller,
we introduce a coordinate system that rotates with the load. The model can be
transformed into these coordinates using the state-dependent input transformation
matrix P (ψ(t)) and state transformation matrix T (ψ(t)),

P (ψ(t)) =

(

cosψ(t) − sinψ(t)

sinψ(t) cosψ(t)

)

,

T (ψ(t)) = blockdiag





















0 − sinψ(t) 0 − cosψ(t)

cosψ(t) 0 − sinψ(t) 0

sinψ(t) 0 cosψ(t) 0

0 cosψ(t) 0 − sinψ(t)











, I3











.

Applying these transformations gives a time-invariant system

ẋ(t) = Ax(t) +Bu(t), (3)

with

A =

























































0 0 0 −ωo 0 0 0

0 0 −ωo 1 0 0 0

−1 ωo 0 0 0 0 0

ωo 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 s1 0 s2

0 0 0 0 0 s3 0

























































, B =

























































−1 0

0 0

0 0

0 1

0 0

−b 0

0 −a

























































.

This system will be used in the design of an LQ/LQG controller in the lab.

4



Pre-lab assignment 1: State and input transformations

Show by, for example, using Matlab symbolic toolbox, that applying T (ψ(t)) and
P (ψ(t)) on the time-varying linearized system (2), we get the time invariant system
in Eq. (3).

Hint: If we have the system

ẋ(t) = A(t)x(t) +B(t)u(t)

and apply z(t) = T (t)x(t) and u(t) = P (t)ũ(t) then we get

ż(t) =
(

Ṫ (t) + T (t)A(t)
)

T−1(t)z(t) + T (t)B(t)P (t)ũ(t).

Matlab example: Consider the system

ẋ(t) =

(

cos 2ωt − sin 2ωt

− sin 2ωt − cos 2ωt

)

x(t) +

(

1 0

0 1

)

u(t)

with the transformation matrices

T (t) =

(

cosωt − sinωt

sinωt cosωt

)

, P (t) =

(

cosωt sinωt

− sinωt cosωt

)

.

The transformations are done i Matlab as follows,
>syms w t real; %define w t as symbolic variables, real.

>A = [cos(2*w*t) -sin(2*w*t); -sin(2*w*t) -cos(2*w*t)];

>B = eye(2);

>T = [cos(w*t) -sin(w*t);sin(w*t) cos(w*t)];

>P = [cos(w*t) sin(w*t);-sin(w*t) cos(w*t)];

>Ahat = simplify((diff(T,t)+T*A)/T)

>Bhat = simplify(T*B*P)

which gives
>Ahat = [1 -w; w -1]

>Bhat = [1 0; 0 1]

Interpretation of states and control signal

Now that we have a linear time-invariant system, it is a good idea to interpret the
states. Let us first concentrate on the four states, x1(t), . . . , x4(t). Using the structure
of T (ψ(t)) we can write









x2(t)

x3(t)








=









cosψ(t) − sinψ(t)

sinψ(t) cosψ(t)

















∆py(t)

∆px(t)

















x1(t)

x4(t)







 =









− sinψ(t) − cosψ(t)

cosψ(t) − sinψ(t)

















∆ṗy(t)

∆ṗx(t)







 .

These expressions are linear transformations using rotational matrices. Thus, x2(t)
and x3(t) are interpreted as deviations from the nominal trajectory in the tangential
and normal direction, respectively, and x1(t) and x4(t) are velocities in opposite
normal and tangential direction, respectively, see Figure 3 for a graphical illustration.

Since T (ψ(t)) has the identity matrix in the bottom right corner the last three states

5



∆px

∆py

ψ(t)ψ(t)

x2
x3

∆ṗx

∆ṗy

x4

x1

LoadLoad

Figure 3 Graphical interpretation of coordinate transformations for positions and veloc-
ities in px- and py-directions.

remain the same

x5(t) = ∆θ(t)

x6(t) = ∆θ̇(t)

x7(t) = ∆ψ̇(t).

Summary of states

From the discussion above, the states of the linear time-invariant system that we are
to control are

























x1(t)

x2(t)

x3(t)

x4(t)

x5(t)

x6(t)

x7(t)

























=

























velocity deviation

position deviation

position deviation

velocity deviation

θ-deviation

θ̇-deviation

ψ̇-deviation

























These states will be available both in the simulation model and in the hardware
implementation.

Pre-lab assignment 2: Interpretation of control signals

Express in words and a simple picture, analogous to Figure 3, an interpretation of
the control signal transformation

(

∆ux

∆uy

)

= P (ψ(t))

(

u1(t)

u2(t)

)

.

Hint: Consider e.g. (u1(t) u2(t) )
T = (1 0 )T . What kind of accelerations

(∆ux(t) ∆uy(t) )
T
will this correspond to?

6



3. Process characteristics

In essentially all control problems, one must get familiar with the process dynamics
before attempting to control it. In this section, we will build a model of the process,
and investigate its characteristics by simulation.

Assignment 1: Constructing and getting to know the system

1. Download lab files lab3 files.zip from the course homepage,
http://www.control.lth.se/course/FRTN10/Multivariable-Control-Labs.html.

2. Start Matlab R2015a by typing VERSION=R2015a matlab in a terminal.

3. Run start lab.

4. In the opened Simulink model LQGlab.mdlwe have access to the time-invariant
state x(t). Make sure that you understand the different variables in the init crane-
file. In this file, you will set initial values for the crane, set linearization tra-
jectory, and design LQ and LQG controllers.

5. Try different initial values on the crane by setting them in the init crane-file.
Let the length of the load be 0.3 m, which is the same as on the real crane,
and use θo(t) = 0.3 rad to specify a desired trajectory. What happens to the
x(t)-coordinates? Use the scopes to view the states. Note: We can never have

the pendulum hanging straight down since this gives a singular model, thus we

must always have theta 0 init and psi dot init > 0

• What happens if we initialize the crane to follow the specified trajectory
of θo(t) = 0.3?

• Compare the load angle θ(t) to x5(t). What is the relation? Can θ(t) and
x5(t) be negative?

• Verify the physical constraint in Eq. (1).

6. The linear time-invariant system in Eq. (3) can be loaded to workspace by
using the command [A, B] = getAandB(l 0 init, theta 0, psi dot 0),
see the init crane-file. Compute the poles of the system. What is the process
characteristics? Can you relate any of the poles to physical parameters?

4. Linear-quadratic (LQ) control

Now that we are familiar with the process, it is time to control it. We want it to
follow the specified trajectory regardless of what the initial conditions are. That is,
all states x(t) should be asymptotically stable. The control strategy will of course
be LQ control!

We will assume that all states of the system are measured and equal to the outputs,
that is, we have the model

ẋ(t) = Ax(t) +Bu(t)

y(t) = x(t),

where we assume that the full state x(t) can be measured. The system matrices were
defined in Eq. (3). The cost function we are minimizing is the familiar

J =

∞
∫

0

(

xT (t)Q1x(t) + uT (t)Q2u(t)
)

dt. (4)

7

http://www.control.lth.se/course/FRTN10/Multivariable-Control-Labs.html


Pre-lab assignment 3: Control signal weighting

If we have (umax
1

, umax
2

) as maximum allowed values of the control signals, formu-
late a weighting matrix Q2 such that the control signal part of the LQ cost function
is

‖u(t)‖Q2
=

∞
∫

0

(

(

u1(t)

umax
1

)2

+

(

u2(t)

umax
2

)2
)

dt.

Assignment 2: LQ control of crane in simulation

Throughout this assignment we want the crane to follow a trajectory with θo =

0.3 rad and ωo =
√

g
l cos θo

. The length of the load should be 0.3 m, i.e., the same as

for the real crane.

1. Design a state-feedback controller using LQ technique by use of the Matlab
function lqr, see init crane-file. Use equal weight on outputs and control
signals, i.e., Q1 = I and Q2 = I.

Hint: Use help lqr in Matlab to figure out how the function works. Consider

also the command diag.

• Is the closed loop stable? What guarantees do we have?

• Plot the amplitude of the closed loop, bodemag(ss(A-B*L, B, eye(7),

0)). Do we have any resonance peaks in the closed loop?

2. Implement the state feedback using the Simulink model in Assignment 1, use
the gain block in the Math library. Set the gain block to “matrix times vector”-
mode. Try different initial values of the crane. Use scopes in Matlab to display
different signals.

3. Try changing the weights on the control signals, try e.g. Q2 = 0.001I and
Q2 = 1000I.

• What are the implications on the outputs?

• What happens to the closed loop poles?

• Any practical aspects to consider? Hint: Check control signal.

4. Tuning an LQ controller involves weighting the outputs and control signals
relative to each other. Try weighting the outputs with Q1 = 10I and the
control signals with Q2 = 0.1I and compare it with Q1 = 1000I and Q2 = 10I,
respectively. What is the difference? Why?

5. Turn on the measurement noise by setting the parameter noise variance to
e.g., 10−5 in the crane init-file. What happens when you change the weights
on the control signals? Check the control signals.

6. As you can see on the real crane, we can not move the cart a great distance, and
the motors have limited acceleration capacity. With the initial conditions that

the load is in a circular orbit with angle θ = 0.2 rad and ω =
√

g
l cos θ

rad/s,

design a controller that fulfills the following specifications when the desired

trajectory has θo = 0.3 rad and ωo =
√

g
l cos θo

rad/s.

(a) The cart should not accelerate faster than 0.3 m/s2 due to physical limi-
tations. Remember that the control signals are accelerations.

(b) The cart should not move more than 2 cm in either direction, i.e., px(t)
and py(t) should stay within ±0.02.

8



(c) We should reach the desired trajectory in approximately 6 s.

To think about at the design

(a) Pre-lab assignment 3.

(b) Remember what the different states x(t) are.

(c) We are not so interested in the load having correct rotational velocity.
It will come naturally from physical constraint if we follow rest of the
trajectory. Thus, we should use a very small weight on x7.

Assignment 3: LQ control of real crane

Once the LQ design gives acceptable control of the simulated crane, it will be tried on
the real process. Running the crane requires using a computer to measure signals,
compute control signals, and actuate the motors. This will be done in a sampled
fashion. Hence our controller must be a sampled version at this stage, i.e., the discrete
time equivalent of the continuous time version taught in the course. Discretizing a
linear system is a straightforward procedure, and is a part of the course Real Time
Systems3 (FRTN01) given at the department. As the design is tried on the real
crane, we change to the discrete time version. This will not affect the result of the
control, nor the interpretation of signals.

1. Change the design to discrete time by using lqrd instead. Use sampling period
0.010 s. See init crane.

2. Change to the discrete time controller in the Simulink model.

3. Switch to the crane hardware-block from the library crane lib and run your
controller on the real crane by help from the lab assistant. Do not forget to
run init hardware.m before running the real crane.

Note: The hardware-block has four additional outputs, y_volt_no_offset,
y_volt_with_offset, x_volt_no_offset and x_volt_with_offset. These
are only used when calibrating the angle measurements of the crane, and should
otherwise be connected to terminator-blocks.

Do not turn on the power supply if the Simulink model is running.

The control signal might be large which can damage the crane. Al-

ways reset the crane by switching the power supply on and off and

then pressing the reset button on the crane before a simulation is

begun.

5. Linear-quadratic-Gaussian (LQG) control

In many control problems, you do not have access to all the states of the system.
This can be due to e.g., hard to position sensors, not physically possible to measure
the state or the state has no physical interpretation as in the case of using an
experimentally estimated model. In any of these cases, the Kalman filter might be
the solution and the control structure will be as shown in Figure 4. In this part of
the lab we assume that the measured states might not be the same as the ones we
want to control. Thus, the process is described as

ẋ(t) = Ax(t) +Bu(t) + v1(t)

y(t) = Cx(t) + v2(t),

3http://www.control.lth.se/course/FRTN01

9



x

x̂

y

z

+

ẋ = Ax+Bu+ v1

˙̂x = Ax̂+Bu+K(y − Cx̂)

M

C

u

v1

v2

−L

Controller

Figure 4 Control structure when using an LQG controller on a process. The variable y

is the measurements, z controlled variables, x states of the process, x̂ estimated states, u
control signal, v1 process noise and v2 measurement noise.

where y(t) are the measurements. We also have process noise v1(t) acting on the
states and measurement noise v2(t) acting on the measurements. The cost function
we are trying to minimize is the same as in the LQ case, see Eq. (4), but now we
must extend the controller to include a Kalman filter, i.e., the controller is

˙̂x = Ax̂+Bu+K(y − Cx̂)

u = −Lx̂.

Pre-lab assignment 4: Kalman filter error dynamics

Answer the following questions.

1. Explain in words what a Kalman filter does. What are its inputs and outputs?

2. Assume that we have the system

ẋ(t) = Ax(t) +Bu(t) + v1(t)

y(t) = Cx+ v2(t).

What is the state estimation error dynamics for the corresponding Kalman
filter?

Pre-lab assignment 5: Kalman filter noise dependence

Try to figure out, without calculations, the answers to the following questions,

1. What happens to the Kalman filter when we increase the intensity of the
measurement noise? Does the Kalman filter put more trust in the model or in
the measurements?

2. If the Kalman filter is changed so that it trusts the measurements less, how is
then the cut-off frequency (bandwidth) of the controller changed?

10



Pre-lab assignment 6: System structure and noise interpretation

In the LQG design, we are assuming that only three states of the system are mea-
sured, x2(t), x3(t), and x5(t). Because of limitations on the physical process, we
must be able to have weights on all states in the state-feedback design.

1. Write the model of the process in state-space form

ẋ(t) = Ax(t) +Bu(t) + v1(t)

y(t) = Cx(t) + v2(t),

assuming that each state and measured output has unique noise signals acting
on them.

2. Interpret the noise signals vi(t), i = 1, 2. What do they model?

3. Assuming all noise signals are white and uncorrelated, what are the structures
of the intensity matrices R1 and R2?

Assignment 4: LQG control of crane in simulation

Throughout this assignment we want the crane to follow a trajectory with θo =

0.3 rad and ωo =
√

g
l cos θo

. The length of the load should be 0.3 m, i.e., the same as

for the real crane. It is now assumed that only x2(t), x3(t) and x5(t) are measured.
It might be helpful to use Figure 4 as support for discussion.

1. Design a Kalman filter using the function kalman on the system in Pre-lab
assignment 6, see init crane. Begin with setting the simulated measurement
noise intensity (noise_variance) to 0, and the estimated noise intensities to
1, i.e., R1 = I and R2 = I. An implementation of the Kalman filter and state
feedback can be found in crane lib. Remember that the control signal input
to the Kalman filter should be the same as the control signal input to the
process.

Implement the Kalman filter in the Simulink model. Simulate the system with
different initial values without using any feedback, e.g. let the load go in a
circular orbit not equal to the desired trajectory with control signals equal to
0. Does the Kalman filter converge to correct state-values?

Hint: Use the subsystem “Plot system” found in the library crane lib. This

subsystem takes the true state vector x and estimated state vector x̂ and outputs

the pairs (xi(t), x̂i(t)), i = 1, . . . , 7 in scopes.

2. Now try to change the measurement noise intensity R2, try e.g., R2 = 0.01I
and R2 = 100I.

• Does the convergence property change? Explain!

• What happens to the error dynamics? Any similarities to the process
characteristics? Explain! Look at the Kalman filter gain. Any conclusion
about desired gain?

3. Try adding noise to the measurements by setting noise variance to 10−5 in
init crane. Investigate the property of changing R2 as above. Try different
initial values of the crane.

• Does the Kalman filter converge to correct values?

• Any conclusion about desired gain? Compare to above. Trade-off?

11



4. Plot the Bode diagram (only amplitude) of the transfer functions from mea-
surements to their filtered equivalents from the Kalman filter. How do they
depend on the measurement noise? Can you relate the shape to the process
characteristics?

Hint: The plots can be generated from the Kest-object created when running
kalman as follows

bodemag(Kest(1:3,3:5));grid

5. In reality, the model and process do not behave exactly the same due to e.g.
parameter estimation errors in the model. Change the length of the load by
setting l error to e.g. 0.03. This will set the crane load length to l + 0.03,
that is, our model will have an error of 10% in the length parameter.

• How do you model this uncertainty in l? What linearized states depends
most on l?

• What happens to the estimations? Do they converge to correct values?
What is the Kalman filter trying to do?

6. Connect the control signal from the controller to the process and the Kalman
filter, that is, now we have feedback. Set the error in load length to 0. Simulate
the closed loop system.

• Does the controller stabilize the system?

• What is the order of the controller designed above? What are its states?

• What is the controller transfer function Fuy(s), (y(t) → u(t)) expressed
in Kalman filter gain K and state-feedback gain L?

7. Plot the magnitude in a Bode diagram from measurements to control signal.
How does the bandwidth of the controller depend on measurement noise? Try
again e.g., R2 = 0.01I and R2 = 100I. Compare to the above results.

Hint: Use bodemag(lqgreg(Kest, L));grid

Assignment 5: LQG control of real crane

1. Figure out good settings of the weight matrices Q1 and Q2 and intensity ma-
trices R1 and R2 by experience from the LQ experiment and the LQG control
of the simulated crane.

2. Check with Simulink model that we have reasonable control when we start the
simulation with the load in a circular orbit with θ = 0.2 rad and ωo =

√

g
l cos θ

.

You do not have to fulfill the specifications from the LQ control problem.

3. Change the design to discrete time by using lqrd and kalmd instead, see
init crane. Change the Simulink model so that discrete time Kalman filter
and state feedback are used, these are found in crane lib.

4. Switch to the crane hardware-block from the library crane lib. Run your
controller on the real crane by help from the lab assistant. Do not forget to
run init hardware.m.

Do not turn on the power supply if the Simulink model is running.

The control signal might be large which can damage the crane. Al-

ways reset the crane by switching the power supply on and off and

then pressing the reset button on the crane before a simulation is

begun.

12



A. Files for simulation/experiments

crane lib.mdl Contains the simulation model, hardware model, input signal trans-
formation and state transformation block.

LQGlab.mdl Contains a simulation model of the linearized time-invariant sys-
tem, created by interconnecting the non-linear model, linearization, and the
two transformation blocks. In this model, the LQ/LQG controllers are imple-
mented.

init crane.m Initialization and design file for the crane and controllers. All param-
eters will be set in this file.

init hardware.m Sets up hardware parameters for experiments on real crane. Ini-
tializes velocity controllers.

getAandB.m Gives the system and input matrix of the linearized time-invariant
system for a certain crane initialization.

start lab.m Starts Simulink, opens LQGlab.mdl and crane init.m.

13


	Introduction
	Physical modeling of the crane
	Interpretation of states and control signal
	Summary of states

	Process characteristics
	Assignment 1:heightwidthwidthheight Constructing and getting to know the system

	Linear-quadratic (LQ) control
	Assignment 2:heightwidthwidthheight LQ control of crane in simulation
	Assignment 3:heightwidthwidthheight LQ control of real crane

	Linear-quadratic-Gaussian (LQG) control
	Assignment 4:heightwidthwidthheight LQG control of crane in simulation
	Assignment 5:heightwidthwidthheight LQG control of real crane

	Files for simulation/experiments

