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Lecture 15: Course Summary

L1-L5 Specifications, models and loop-shaping by hand

L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach

L12-L14 Controller optimization: Numerical approach
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Examples

Flexible servo resonant system

Quadruple tank system multivariable (MIMO), NMP zero

Rotating crane multivariable, observer needed

DVD control resonant system, wide frequency range, (midranging)

Bicycle steering unstable pole/zero-pair

Distillation column MIMO, input-output pairing
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Course Summary

• Specifications, models and loop-shaping

○ Limitations on achievable performance

○ Controller optimization: Analytic approach

○ Controller optimization: Numerical approach
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2-DOF control

F C P
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Reduce the effects of load disturbances

Limit the effects of measurement noise

Reduce sensitivity to process variations

Make output follow command signals
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2DOF control
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Important step responses
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Lag and lead filters for loop-shaping
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MIMO systems

If C, P and F are general MIMO-systems, so called transfer function

matrices, the order of multiplication matters and

PC ,= CP

and thus we need to multiply with the inverse from the correct side as

in general

(I + L)−1M ,= M(I + L)−1

Note, however that

(I + PC)−1PC = P(I + CP)−1C = PC(I + PC)−1
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Different gains in different directions:
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Plot singular values of G(iω ) versus frequency

» s=tf(’s’)

» G=[1/(s+1) 1 ; 2/(s+2) 1]

» sigma(G) % plot singular values

% Alt. for a certain frequency:

» w = 1;

» A = [1/(i*w+1) 1; 2/(i*w+2) 1]

» [U,S,V] = svd(A)
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Realization of multi-variable system

Example: To find state space realization for the system

G(s) =

[
1
s+1

2
(s+1)(s+3)

6
(s+2)(s+4)

1
s+2

]

we write the transfer matrix as

[
1
s+1

1
s+1 −

1
s+3

3
s+2 −

3
s+4

1
s+2

]
=

[
1

0

] [
1 1

]

s+ 1
+

[
0

1

] [
3 1

]

s+ 2
−

[
1

0

] [
0 1

]

s+ 3
−

[
0

1

] [
3 0

]

s+ 4

This gives the realization




ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)


 =




−1 0 0 0

0 −2 0 0

0 0 −3 0

0 0 0 −4







x1(t)
x2(t)
x3(t)
x4(t)


+




1 1

3 1

0 −1
−3 0




[
u1(t)
u2(t)

]

[
y1(t)
y2(t)

]
=

[
1 0 1 0

0 1 0 1

]
x(t)
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The Small Gain Theorem

Consider a linear system S with input u and output S(u) having a

(Hurwitz) stable transfer function G(s). Then, the system gain

qSq := sup
u

qS(u)q

quq
is equal to qGq∞ := sup

ω
pG(iω )p

r1

r2

e1

e2

S1

S2

Assume that S1 and S2 are input-output stable. If qS1q ⋅ qS2q < 1,
then the gain from (r1, r2) to (e1, e2) in the closed-loop system is

finite.
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Application to robustness analysis

❞ ❞G(iω )

C(iω )

∆(iω )

✻
✲ ❄

✛

✲

✲

✲ ✲

v w

The transfer function from w to v is

G(iω )C(iω )

1+ G(iω )C(iω )

Hence the small gain theorem guarantees closed-loop stability for all

perturbations ∆ with

q∆q <

(
sup

ω

∣∣∣∣
G(iω )C(iω )

1+ G(iω )C(iω )

∣∣∣∣
)−1
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Spectral density

G(s)
u y

Assume that the stationary mean-zero stochastic process u has

spectral density Φu(ω ). Then

Φy(ω ) = G(iω )Φu(ω )G(iω )∗

“Any spectrum” can be generated by filtering white noise

Finding G(s) given Φy(ω ) is called spectral factorization
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State-space system with white noise input

Given the system

ẋ = Ax + Bv, Φv(ω ) = R

the stationary covariance of the state x is given by

Πx =
1

2π

∫ ∞

−∞
Φx(ω )dω

The symmetric matrix Πx can be found by solving the Lyapunov

equation

AΠx + ΠxA
T + BRBT = 0
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Course Summary

○ Specifications, models and loop-shaping

• Limitations on achievable performance

○ Controller optimization: Analytic approach

○ Controller optimization: Numerical approach
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Example: Two water tanks

Example from Lecture 6:

u1u1

u2 u2x1

x1
x2

ax2 a > 1

ẋ1 = −x1 + u1 ẋ2 = −ax2 + u1

y1 = x1 + u2 y2 = ax2 + u2

Can you reach y1 = 1, y2 = 2? Can you stay there?
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Example: Two water tanks

u1u1

u2 u2x1

x1

x2

ax2 a > 1

ẋ1 = −x1 + u1 ẋ2 = −ax2 + u1

The controllability Gramian S =

∫ ∞

0

[
e−t

e−at

] [
e−t

e−at

]T
dt =

[
1
2

1
a+1

1
a+1

1
2a

]

is close to singular for a ( 1, so it is harder to reach a desired state.
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Computing the controllability Gramian

The controllability Gramian S =
∫∞
0 e

AtBBT eA
T tdt can be computed

by solving the linear system of equations

AS+ SAT + BBT = 0

S = ST > 0, i.e., S is a symmetric positive definite matrix

Example: For a 2-state system, assign

S =

[
s11 s12
s12 s22

]

Multiply together and solve for s11, s12, s22 in the same way as you

also do for the spectral factorization and the Riccati equations...
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Example: Two water tanks

u1u1

u2 u2x1

x1
x2

ax2 a > 1

ẋ1 = −x1 + u1 ẋ2 = −ax2 + u1

G(s) =

[
1
s+1 1
2
s+2 1

]
. Find zero from detG(s) =

−s

(s+ 1)(s+ 2)

There is a zero at s = 0! Outputs must be equal at stationarity.
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Sensitivity bounds from RHP zeros and poles

Rules of thumb:

“The closed-loop bandwidth must be less than z.”

“The closed-loop bandwidth must be greater than p.”

“Time delays T must be less than 1/p.”

Hard bounds:

The sensitivity must be one at an unstable zero:

P(z) = 0 [ S(z) :=
1

1+ P(z)C(z)
= 1

The complimentary sensitivity must be one at an unstable pole:

P(p) = ∞ [ T(p) :=
P(p)C(p)

1+ P(p)C(p)
= 1
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Maximum Modulus Theorem

Assume that G(s) is rational, proper and stable. Then

max
Re s≥0

pG(s)p = max
ω∈R

pG(iω )p

Corollary:

Suppose that the plant P(s) has unstable zeros zi and unstable poles

pj . Then the specifications

sup
ω
pWS(iω )S(iω )p < 1 sup

ω
pWT(iω )T(iω )p < 1

are impossible to meet with a stabilizing controller unless

qWS(zi)q < 1 for every unstable zero zi and qWT(pj)q < 1 for every

unstable pole pj .
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Hard limitations from unstable zeros

If the plant has an unstable zero zu, then the specification
∣∣∣∣

1

1+ P(iω )C(iω )

∣∣∣∣ <
2√

1+ z2u/ω
2

for all ω

is impossible to satisfy.

10
−2

10
−1

10
0

10
1

zu

Examples: Rear-wheel steering and quadruple tank process
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Hard limitations from unstable poles

If the plant has an unstable pole pu, then the specification
∣∣∣∣
P(iω )C(iω )

1+ P(iω )C(iω )

∣∣∣∣ <
2√

ω 2/p2u + 1
for all ω

is impossible to satisfy.

10
−2

10
−1

10
0

10
1

pu

Example: Inverted pendulum
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Nonmin-phase zero and unstable pole

Let P = P̂(s− z)(s− p)−1, with P̂ proper and P̂(p) ,= 0.

Then, for stable closed loop the sensitivity function satisfies

sup
ω
pS(iω )p ≥

∣∣∣∣
z+ p

z− p

∣∣∣∣

so if p ( z, then the sensitivity function must have a high peak for

every controller C.

Example: Bicycle with rear wheel steering

θ (s)

δ (s)
=
am{V0
bJ

⋅
(−s+ V0/a)

(s2 −m�{/J)
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Relative Gain Array (RGA)

For a square matrix A ∈ Cn$n, define

RGA(A) := A. ∗ (A−1)T

where “.*” denotes element-by-element multiplication.

(For a non-square matrix, use pseudo inverse A†)

The sum of all elements in a column or row is one.

Permutations of rows or columns in A give the same

permutations in RGA(A)

RGA(A) = RGA(D1AD2) if D1 and D2 are diagonal, i.e.

RGA(A) is independent of scaling

If A is triangular, then RGA(A) is the unit matrix I.
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Example: RGA for a distillation column

Find a permutation of inputs and outputs that makes RGA(P(0))
as close as possible to the identity matrix.

Avoid pairings that give negative diagonal elements of

RGA(P(0))

RGA(P(0)) =

[
0.2827 −0.6111 1.3285

0.0134 1.5827 −0.5962

]

To choose control signal for y1, we apply the heuristics to the top row

and choose u3. Based on the bottom row, we choose u2 to control y2.

Decentralized control!
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Decoupling

Simple idea: Find a compensator so that the system appears to be

without coupling ("block-diagonal transfer function matrix").

Input decoupling Q = PD1

Output decoupling Q = D2P

“both” Q = D2PD1
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yuv

w

PC D1

D2

Find D1 and D2 so that the controller sees a “diagonal plant”:

D2PD1 =




∗ 0 0

0 ∗ 0

0 0 ∗




Then we can use a "decentralized" controller C with same

block-diagonal structure.
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Course Summary

○ Specifications, models and loop-shaping

○ Limitations on achievable performance

• Controller optimization: Analytic approach

○ Controller optimization: Numerical approach
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A general optimization setup

Plant

Controller

✛ ✛

✛

✲

control inputs u

controlled variables z

measurements y

distubances w

The objective is to find a controller that optimizes the transfer matrix

Gzw(s) from disturbances w to controlled outputs z.

Lecture 9-11: Problems with analytic solutions

Lectures 12-14: Problems with numeric solutions
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Output feedback using state estimates

Plant

✛

Estimator
✲

✛

−L
✛

✲

✛

v

u x̂y

z

Plant:

{
ẋ(t) = Ax(t) + Bu(t) + v1(t)

y(t) = Cx(t) + v2(t)

Controller:

{
d
dt
x̂(t) = Ax̂(t) + Bu(t) + K [y(t) − Cx̂(t)]

u(t) = −Lx̂(t)
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Linear Quadratic Gaussian (LQG) control

Given the linear plant

{
ẋ(t) = Ax(t) + Bu(t) + v1(k)

y(t) = Cx(t) + v2(t)

Q =

[
Q1 Q12
QT12 Q2

]
> 0

R =

[
R1 R12
RT12 R2

]
> 0

consider controllers of the form u = −Lx̂ with
d
dt
x̂ = Ax̂ + Bu+ K [y− Cx̂]. The cost function

E

{
xTQ1x + 2x

TQ12u+ u
TQ2u

}

is minimized when K and L satisfy

0 = Q1 + A
TS+ SA− (SB + Q12)Q

−1
2 (SB + Q12)

T L = Q−12 (SB + Q12)
T

0 = R1 + AP+ PA
T − (PCT + R12)R

−1
2 (PC

T + R12)
T K = (PCT + R12)R

−1
2

The minimal value of the cost is

tr(SR1) + tr[PL
T(BTSB + Q2)L]
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Tuning the weights

A small Q2 compared to Q1 means that control is “cheap”

Resulting LQ controller will have large feedback gain

The plant state will be quickly regulated to zero

A large cost on an individual state xi means that more effort will

be spent on regulating that particular state to zero

A small R2 compared to R1 means that measurements can be

trusted

Resulting Kalman filter will have large filter gain

The initial estimation error will quickly converge to zero

A large noise covariance on an individual state xi means that the

estimation error will decay faster for that particular state
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Course Summary

○ Specifications, models and loop-shaping

○ Limitations on achievable performance

○ Controller optimization: Analytic approach

• Controller optimization: Numerical approach
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The Q-parameterization (Youla)

Plant

Controller

✛ ✛

✛

✲

control inputs u

controlled variables z

measurements y

distubances w

Idea for lecture 12-14:

The choice of controller generally corresponds to finding Q(s), to get

desirable properties of the map from w to z:

z w

Pzw(s) − Pzu(s)Q(s)Pyw(s)

Once Q(s) is determined, a corresponding controller is derived.
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The Youla Parameterization

[
Pzw Pzu
Pyw Pyu

]

−C(s)

✛ ✛

✛

✲

u

z

y

w

The closed-loop transfer matrix from w to z is

Gzw(s) = Pzw(s) − Pzu(s)Q(s)Pyw(s)

where

Q(s) = C(s)
[
I + Pyu(s)C(s)

]−1

C(s) = Q(s) + Q(s)Pyu(s)C(s)

C(s) =
[
I − Q(s)Pyu(s)

]−1
Q(s)
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Synthesis by convex optimization

A general control synthesis problem can be stated as a convex

optimization problem in the variables Q0, . . . ,Qm. The problem has a

quadratic objective, with linear and quadratic constraints:

Minimize
∫ ∞

−∞
pPzw(iω ) + Pzu(iω )

Q(iω )︷ ︸︸ ︷∑

k

Qkφk(iω ) Pyw(iω )p
2dω

}
quadratic objective

subject to
step response wi → zj is smaller than fi jk at time tk
step response wi → zj is bigger than �i jk at time tk

}
linear constraints

Bode magnitude wi → zj is smaller than hi jk at ω k
}

quadratic constraints

Once the variables Q0, . . . ,Qm have been optimized, the controller is

obtained as C(s) =
[
I − Q(s)Pyu(s)

]−1
Q(s)
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Model reduction by balanced truncation

Consider a balanced realization of a stable system,
[
ξ̇1
ξ̇2

]
=

[
A11 A12
A21 A22

] [
ξ1
ξ2

]
+

[
B1
B2

]
u Σ =

[
Σ1 0

0 Σ2

]

y=
[
C1 C2

] [
ξ1
ξ2

]
+ Du

with the lower part of the Gramian being Σ2 =




σ r+1 0

. . .

0 σ n


.

Replacing the second state equation by ξ̇2 = 0 gives the relation

0 = A21ξ1 + A22ξ2 + B2u. The reduced system
{

ξ̇1 = (A11 − A12A
−1
22 A21)ξ1 + (B1 − A12A

−1
22 B2)u

yr = (C1 − C2A
−1
22 A21)ξ1 + (D − C2A

−1
22 B2)u

satisfies the error bound

qy− yrq2
quq2

≤ 2σ r+1 + ⋅ ⋅ ⋅+ 2σ n
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