
FRTN10 Multivariable Control, Lecture 14

Automatic Control LTH, 2016

Course Outline

L1-L5 Specifications, models and loop-shaping by hand

L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach

L12-L14 Controller optimization: Numerical approach

12. Youla parameterization, internal model control

13. Synthesis by convex optimization

14. Controller simplification

Lecture 14 – Outline

1. Model reduction by balanced truncation

2. Application to controller simplification

3. Frequency weighted balanced truncation

Reading note: [Glad/Ljung, section 3.6]

Lecture 14 – Outline

Model reduction by balanced truncation

Application to controller simplification

Frequency-weighted balanced truncation

Model reduction

Mathematical modeling can lead to dynamical models of very high

order

Controller synthesis using the Q-parameteritzation can lead to very

high order controllers

Need for systematic way to reduce the model order

In general terms we would like to achieve

Gr(s) ( G(s)

where Gr(s) has (much) lower order than G(s)

Example – DC-motor
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In Lecture 13 we minimized
∫∞
−∞ pGzw(iω )p2dω subject to step

response bounds on Gz1w1 and Gz2w2 :
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Example – DC-motor

Recall that

C(s) =
[
I − Q(s)Pyu(s)

]−1Q(s), with Q(s) =
∑N

k=0 Qkφ k(s).

Controller order grows with the number of basis functions φ k.

Optimized controller for DC-servo has order 14. Is that really needed?
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Controllability and observability

The controllability Gramian S =
∫∞

0 eAt B BT eAT tdt can be computed

by solving the Lyapunov equation

AS+ SAT + B BT = 0

The observability Gramian O =
∫∞

0 eAT tCT CeAtdt can be computed

by solving the Lyapunov equation

AT O + OA+ CT C = 0

We want to remove states that are both poorly controllable and poorly

observable.
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Gramians, looking back

ẋ = Ax + Bu
y= Cx + Du x(t) = eAtx(0)+

∫ t

0
eA(t−τ )Bu(τ )dτ

—————————————————

Impulse response from zero intial condition: ui(t) = δ (t), x(0) = 0

xi(t) = eAt Bi

X (t) =
[
x1 x2 ⋅ ⋅ ⋅ xn

]
= eAt B

Sx=̂

∫ ∞

0
X (t)X T(t) dt =

∫ ∞

0
eAt B BT eAT t dt

—————————————————

Output from u " 0 (only initial state x(0) = x0)

y(t) = Cx(t) = CeAtx0

∫ ∞

0
y(t)T y(t)dt =

∫ ∞

0
xT

0 eAT tCT CAtx0dt =̂ xT
0 Oxx0

Balanced realizations

For a stable system (A, B, C) with Gramians Sx and Ox, the variable

transformation ξ = T x gives the new state-space matrices Â = T AT−1,

B̂ = T B, Ĉ = CT−1 and the new Gramians

Sξ =

∫ ∞

0
eÂt B̂ B̂T eÂT tdt =

∫ ∞

0
TeAt B BT eAT tTT dt = TSxTT

Oξ =

∫ ∞

0
eÂT tĈT ĈeÂtdt =

∫ ∞

0
T−T eAtCT CeAT tT−1dt = T−T OxT−1

A particular choice of T gives Sξ = Oξ =




σ 1 0
. . .

0 σ n




︸ ︷︷ ︸
Σ

The corresponding realization

{
ξ̇ = Âξ + B̂u
y= Ĉx

is called a balanced realization.

Hankel singular values

Notice that




σ 2
1 0

. . .

0 σ 2
n


 = (TSxTT)︸ ︷︷ ︸

Σ

(T−T OxT−1)︸ ︷︷ ︸
Σ

= TSxOxT−1

so the diagonal elements are the eigenvalues of SxOx, independently

of coordinate system. The numbers σ 1, . . . ,σ n are called the Hankel

singular values of the system.

A small Hankel singular value corresponds to a state that is both

weakly controllable and weakly observable. Hence, it can be truncated

without much effect on the input-output behavior.

Model reduction by balanced truncation

Consider a balanced realization[
ξ̇1
ξ̇2

]
=

[
A11 A12
A21 A22

] [
ξ1
ξ2

]
+

[
B1
B2

]
u Σ =

[
Σ1 0
0 Σ2

]

y=
[
C1 C2

] [
ξ1
ξ2

]
+ Du

with the lower part of the Gramian being Σ2 =




σ r+1 0
. . .

0 σ n


.

Replacing the second state equation by ξ̇2 = 0 gives the relation

0 = A21ξ1 + A22ξ2 + B2u. The reduced system
{

ξ̇1 = (A11 − A12 A−1
22 A21)ξ1 + (B1 − A12 A−1

22 B2)u
yr = (C1 − C2 A−1

22 A21)ξ1 + (D − C2 A−1
22 B2)u

satisfies the error bound

qy− yrq2

quq2
≤ 2σ r+1 + ⋅ ⋅ ⋅+ 2σ n

Example

Original system:
1− s

s6 + 3s5 + 5s4 + 7s3 + 5s2 + 3s+ 1

Hankel singular values:

Sigma = [1.9837 1.9184 0.7512 0.3292 0.1478 0.0045]

Reduced system:

0.3717 s^3 - 0.9682 s^2 + 1.14 s - 0.5185
-----------------------------------------

s^3 + 1.136 s^2 + 0.825 s + 0.5185
Bode Magnitude Diagram

Frequency (rad/sec)
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Example — Heat exchanger

VC
dTC

dt
= fC(TCi − TC) + β (TH − TC) (cold side)

VH
dTH

dt
= fH(THi − TH) − β (TH − TC) (hot side)

u1 = TCi is the in-flow temperature on the cold side

x1 = TC is the out-flow temperature on the cold side

u2 = THi is the in-flow temperature on the hot side

x2 = TH is the out-flow temperature on the hot side

Numerical values:

ẋ =

[
−0.21 0.2

0.2 −0.21

]
x +

[
0.01 0

0 0.01

]
u

y= x

Example — Heat exchanger

A state transformation ξ1 = −7.07(x1 + x2), ξ2 = 7.07(x1 − x2)
gives the balanced realization

ξ̇ =
[
−0.01 0

0 −0.41

]
ξ + 0.0707

[
−1 −1
1 −1

]
u

y= 0.0707

[
−1 1
−1 −1

]
ξ

the common controllability/observability Gramian

Sξ = Oξ =

[
0.5 0
0 0.0122

]

and the reduced model

ξ̇1 = −0.01ξ1 − 0.0707
[
1 1

]
u

y= −0.0707

[
1
1

]
ξ1 + 0.0122

[
1 −1
−1 1

]
u

Lecture 14 – Outline

Model reduction by balanced truncation

Application to controller simplification

Frequency-weighted balanced truncation
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Example – DC-servo

Computing the 14 Hankel singular values gives

[
13.11 0.97 0.24 0.14 0.05 0.02 0.01 . . .

]
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Stable modes

Example – DC-servo

Reduced controller with 5 states:
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Handling unstable systems

Before model reduction, decompose the system into its stable and

nonstable parts:

G(s) = Gs(s) + Gns(s)

Perform the reduction only on Gs(s); then add Gns(s) again

(Performed automatically by Matlab’s balreal and balred)

Example – Doyle–Stein (1979)

In Lecture 13 we found the following 12th order controller for

Doyle–Stein’s example using optimization:
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Example – Doyle–Stein (1979)

The controller has one unstable pole in 16.1. Hankel singular values:
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Example – Doyle–Stein (1979)

Reduced controller with 5 states:
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Model reduction by balanced truncation

Application to controller simplification

Frequency-weighted balanced truncation

Are all frequencies equally important?

The error bound

max
ω
pG(iω ) − Gr(iω )p = sup

u

qy− yrq2

quq2
≤ 2σ r+1 + ⋅ ⋅ ⋅+ 2σ n

emphasizes all frequencies equally, but comparing a controller C(s)
with a reduced controller Cr(s) in closed loop operation gives

pP(I + CP)−1C − P(I + Cr P)−1Crp ( pP(I + CP)−1(C − Cr)p

Hence it is interesting to minimize the frequency weighted error

max
ω

∣∣∣W(iω )[C(iω ) − Cr(iω )]
∣∣∣

where W(iω ) = P(iω )(I + C(iω )P(iω ))−1.
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Frequency-weighted balanced truncation

For model reduction with the aim to minimize

max
ω

∥∥∥Wo(iω )[G(iω ) − Gr(iω )]Wi(iω )
∥∥∥

where

Wi(s) = Ci(sI − Ai)
−1 Bi + Di G(s) = C(sI − A)−1 B + D Wo(s) = Co(sI − Ao)

−1 Bo + Do

find extended Gramians by solving

[
A BCi

0 Ai

] [
S S12

ST
12 S22

]
+

[
S S12

ST
12 S22

] [
A BCi

0 Ai

]T

+

[
B Di

Bi

] [
B Di

Bi

]T

= 0

[
A 0

BoC Ao

]T [
O O12

OT
12 O22

]
+

[
O O12

OT
12 O22

] [
A 0

BoC Ao

]
+

[
CT DT

o
DT

o

] [
DoC Do

]
= 0

then change coordinates to make S and O equal and diagonal before

truncating the realization of G(s) to get Gr(s) as before.

Summary

◮ Low order controllers could be desirable to meet constraints on

speed and memory.

◮ Balanced realizations can reveal less important states

◮ Good theoretical error bounds

◮ Frequency weighting essential for closed loop performance

◮ Reduction of unstable controllers not treated here
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