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Course Outline

L1-L5 Specifications, models and loop-shaping by hand

L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach

L12-L14 Controller optimization: Numerical approach

12 Youla parameterization, internal model control
13 Synthesis by convex optimization
14 Controller simplification
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Lecture 14 – Outline

1 Model reduction by balanced truncation

2 Application to controller simplification

3 Frequency weighted balanced truncation

Reading note: [Glad/Ljung, section 3.6]
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Model reduction

Mathematical modeling can lead to dynamical models of very high

order

Controller synthesis using the Q-parameteritzation can lead to very

high order controllers

Need for systematic way to reduce the model order

In general terms we would like to achieve

Gr(s) ( G(s)

where Gr(s) has (much) lower order than G(s)
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Example – DC-motor
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In Lecture 13 we minimized
∫∞
−∞ pGzw(iω )p

2dω subject to step

response bounds on Gz1w1 and Gz2w2 :

0 1 2 3 4

0

1

2

3

4

5

P/(1+PC)

Time (seconds)

A
m

p
lit

u
d

e

0 1 2 3 4
-0.4

-0.2

0

0.2

0.4

0.6

0.8

C/(1+PC)

Time (seconds)

A
m

p
lit

u
d

e

Automatic Control LTH, 2016 FRTN10 Multivariable Control, Lecture 14



Example – DC-motor

Recall that

C(s) =
[
I − Q(s)Pyu(s)

]−1
Q(s), with Q(s) =

∑N
k=0 Qkφk(s).

Controller order grows with the number of basis functions φk.

Optimized controller for DC-servo has order 14. Is that really needed?
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Controllability and observability

The controllability Gramian S =
∫∞
0 e

AtBBT eA
T tdt can be computed

by solving the Lyapunov equation

AS+ SAT + BBT = 0

The observability Gramian O =
∫∞
0 e

AT tCTCeAtdt can be computed

by solving the Lyapunov equation

ATO + OA+ CTC = 0

We want to remove states that are both poorly controllable and poorly

observable.
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Gramians, looking back

ẋ = Ax + Bu

y= Cx + Du x(t) = eAtx(0)+

∫ t

0

eA(t−τ )Bu(τ )dτ

—————————————————

Impulse response from zero intial condition: ui(t) = δ (t), x(0) = 0

xi(t) = e
AtBi

X (t) =
[
x1 x2 ⋅ ⋅ ⋅ xn

]
= eAtB

Sx=̂

∫ ∞

0

X (t)X T(t) dt =

∫ ∞

0

eAtBBT eA
T t dt

—————————————————

Output from u " 0 (only initial state x(0) = x0)

y(t) = Cx(t) = CeAtx0
∫ ∞

0

y(t)T y(t)dt =

∫ ∞

0

xT0 e
AT tCTCAtx0dt =̂ xT0 Oxx0
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Balanced realizations

For a stable system (A, B,C) with Gramians Sx and Ox, the variable

transformation ξ = Tx gives the new state-space matrices Â = TAT−1,

B̂ = TB, Ĉ = CT−1 and the new Gramians

Sξ =

∫ ∞

0

eÂt B̂ B̂T eÂ
T tdt =

∫ ∞

0

TeAtBBT eA
T tTTdt = TSxT

T

Oξ =

∫ ∞

0

eÂ
T tĈT ĈeÂtdt =

∫ ∞

0

T−T eAtCTCeA
T tT−1dt = T−TOxT

−1

A particular choice of T gives Sξ = Oξ =




σ 1 0

. . .

0 σ n




︸ ︷︷ ︸
Σ

The corresponding realization

{
ξ̇ = Âξ + B̂u

y= Ĉx

is called a balanced realization.
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Hankel singular values

Notice that




σ 21 0

. . .

0 σ 2n


 = (TSxTT)︸ ︷︷ ︸

Σ

(T−TOxT
−1)︸ ︷︷ ︸

Σ

= TSxOxT
−1

so the diagonal elements are the eigenvalues of SxOx, independently

of coordinate system. The numbers σ 1, . . . ,σ n are called the Hankel

singular values of the system.

A small Hankel singular value corresponds to a state that is both

weakly controllable and weakly observable. Hence, it can be truncated

without much effect on the input-output behavior.
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Model reduction by balanced truncation

Consider a balanced realization[
ξ̇1
ξ̇2

]
=

[
A11 A12
A21 A22

] [
ξ1
ξ2

]
+

[
B1
B2

]
u Σ =

[
Σ1 0

0 Σ2

]

y=
[
C1 C2

] [
ξ1
ξ2

]
+ Du

with the lower part of the Gramian being Σ2 =




σ r+1 0

. . .

0 σ n


.

Replacing the second state equation by ξ̇2 = 0 gives the relation

0 = A21ξ1 + A22ξ2 + B2u. The reduced system
{

ξ̇1 = (A11 − A12A
−1
22 A21)ξ1 + (B1 − A12A

−1
22 B2)u

yr = (C1 − C2A
−1
22 A21)ξ1 + (D − C2A

−1
22 B2)u

satisfies the error bound

qy− yrq2
quq2

≤ 2σ r+1 + ⋅ ⋅ ⋅+ 2σ n
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Example

Original system:
1− s

s6 + 3s5 + 5s4 + 7s3 + 5s2 + 3s+ 1

Hankel singular values:

Sigma = [1.9837 1.9184 0.7512 0.3292 0.1478 0.0045]

Reduced system:

0.3717 s^3 - 0.9682 s^2 + 1.14 s - 0.5185

-----------------------------------------

s^3 + 1.136 s^2 + 0.825 s + 0.5185

Bode Magnitude Diagram

Frequency (rad/sec)
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Example — Heat exchanger

VC
dTC

dt
= fC(TCi − TC) + β (TH − TC) (cold side)

VH
dTH

dt
= fH(THi − TH) − β (TH − TC) (hot side)

u1 = TCi is the in-flow temperature on the cold side

x1 = TC is the out-flow temperature on the cold side

u2 = THi is the in-flow temperature on the hot side

x2 = TH is the out-flow temperature on the hot side

Numerical values:

ẋ =

[
−0.21 0.2

0.2 −0.21

]
x +

[
0.01 0

0 0.01

]
u

y= x
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Example — Heat exchanger

A state transformation ξ1 = −7.07(x1 + x2), ξ2 = 7.07(x1 − x2)
gives the balanced realization

ξ̇ =

[
−0.01 0

0 −0.41

]
ξ + 0.0707

[
−1 −1
1 −1

]
u

y= 0.0707

[
−1 1

−1 −1

]
ξ

the common controllability/observability Gramian

Sξ = Oξ =

[
0.5 0

0 0.0122

]

and the reduced model

ξ̇1 = −0.01ξ1 − 0.0707
[
1 1

]
u

y= −0.0707

[
1

1

]
ξ1 + 0.0122

[
1 −1
−1 1

]
u
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Lecture 14 – Outline

1 Model reduction by balanced truncation

2 Application to controller simplification

3 Frequency-weighted balanced truncation
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Example – DC-servo

Computing the 14 Hankel singular values gives

[
13.11 0.97 0.24 0.14 0.05 0.02 0.01 . . .

]
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Example – DC-servo

Reduced controller with 5 states:
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Handling unstable systems

Before model reduction, decompose the system into its stable and

nonstable parts:

G(s) = Gs(s) + Gns(s)

Perform the reduction only on Gs(s); then add Gns(s) again

(Performed automatically by Matlab’s balreal and balred)
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Example – Doyle–Stein (1979)

In Lecture 13 we found the following 12th order controller for

Doyle–Stein’s example using optimization:
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Example – Doyle–Stein (1979)

The controller has one unstable pole in 16.1. Hankel singular values:
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Example – Doyle–Stein (1979)

Reduced controller with 5 states:
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Are all frequencies equally important?

The error bound

max
ω
pG(iω ) − Gr(iω )p = sup

u

qy− yrq2
quq2

≤ 2σ r+1 + ⋅ ⋅ ⋅+ 2σ n

emphasizes all frequencies equally, but comparing a controller C(s)
with a reduced controller Cr(s) in closed loop operation gives

pP(I + CP)−1C − P(I + CrP)
−1Crp ( pP(I + CP)

−1(C − Cr)p

Hence it is interesting to minimize the frequency weighted error

max
ω

∣∣∣W(iω )[C(iω ) − Cr(iω )]
∣∣∣

where W(iω ) = P(iω )(I + C(iω )P(iω ))−1.
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Frequency-weighted balanced truncation

For model reduction with the aim to minimize

max
ω

∥∥∥Wo(iω )[G(iω ) − Gr(iω )]Wi(iω )
∥∥∥

where

Wi(s) = Ci(sI − Ai)
−1Bi + Di G(s) = C(sI − A)−1B + D Wo(s) = Co(sI − Ao)

−1Bo + Do

find extended Gramians by solving

[
A BCi
0 Ai

] [
S S12
ST12 S22

]
+

[
S S12
ST12 S22

] [
A BCi
0 Ai

]T
+

[
BDi
Bi

] [
BDi
Bi

]T
= 0

[
A 0

BoC Ao

]T [
O O12
OT12 O22

]
+

[
O O12
OT12 O22

] [
A 0

BoC Ao

]
+

[
CTDTo
DTo

] [
DoC Do

]
= 0

then change coordinates to make S and O equal and diagonal before

truncating the realization of G(s) to get Gr(s) as before.
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Summary

Low order controllers could be desirable to meet constraints on

speed and memory.

Balanced realizations can reveal less important states

Good theoretical error bounds

Frequency weighting essential for closed loop performance

Reduction of unstable controllers not treated here
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