FRTN10 Multivariable Control, Lecture 12

Automatic Control LTH, 2016

Course Outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance
L9-L11 Controller optimization: Analytic approach
L12-L14 Controller optimization: Numerical approach
12. Youla parameterization, internal model control

13. Synthesis by convex optimization
14. Controller simplification

Lecture 12 — Outline

1. The Youla parameterization
2. Internal model control (IMC)

3. Dead-time compensation

[Glad&Ljung Section 8.4]
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The Quola parameterization

Basic idea of Youla and IMC

Assume stable plant P. Model for design:
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Choose @ to get desired closed-loop properties. Then C = W

General idea for Lectures 12-14
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Controller

The choice of controller corresponds to designing a transfer matrix
Q(s), to get desirable properties of the following map from w to z:

z w

%Pzw(s) - qu(s)Q(s)wa(s)

Once Q(s) has been designed, the corresponding controller can be found.

The Youla (Q) parameterization
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The closed-loop transfer matrix from w to z is
Gaw(s) = Pa(s) — Pau(s)Q(s) Pyu(s)
-1

where Q(s) = C(s)[I + Pyu(s)C(s)]

The controller is given by C(s) = [I — Q(s)Pyu (s)]_lQ(s)

Stability

Pzw qu

Suppose the plant P =
pp p {wa Py,

} is stable. Then

> Stabilty of @ implies stability of P, — P, Q Py

> fQ =C[I+ PyuC}_1 is unstable, then the closed loop is
unstable.

Hence, all stabilizing controllers are given by

C(s) = [I - Q(5)Pyu(s)] ' Q(s)

where Q(s) is an arbitrary stable transfer function.




Dealing with unstable plants
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If Po(s) is unstable, let Cy(s) be some stabilizing controller. Then the
previous argument can be applied with P, Pz, Py, and Py,
representing the stabilized system.

Next lecture: Synthesis by convex optimization

Quite general control synthesis problems can be stated as convex
optimization problems in the variable @(s). The problem could have a
quadratic objective, with linear/quadratic constraints, e.g.:

Qi)
Minimize [ |Pay(i@) + Pa(io) Z Q191 (i) Py, (iw)|*dw } quadratic objective
®

step response w; — z; is smaller than f;j;, at time ¢;,
step response w; — z; is bigger than g;j;, at time ¢,

Bode magnitude w; — z; is smaller than A, at @y, } quadratic constraints

subj. to } linear constraints

Here Q(s) = >_, QrPr(s), where ¢1,...,¢,, are some fixed basis
functions, and Q, ..., @, are optimization variables.

Once Q(s) has been determined, the controller is obtained as

C(s) = [I - Q(s)Pu(s)] ' Q(s)

Example — DC-motor
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Assume we want to optimize the closed-loop transfer matrix from
(wl,wQ) to (21,22),

Ga(s) = L

P —PC
1+PC 1+PC
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when P(s) = %. How to obtain stable Py, Py, Py, Py, to get

sz(s) = Pzw(s) - qu(s)Q(s)wa(s) ?

Stabilizing controller for DC-motor
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The plant P(s) = % is not stable, so introduce

C(s) = Co(s) + Cu(s)

where Cy(s) = 1 stabilizes the plant

Redrawn diagram for DC-motor example
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Internal model control (IMC)

Internal model control (IMC)

Plant

Feedback is used only if the real process Py (s) deviates from the
model P(s).

When P = Py, the transfer function from r to y is P(s)Q(s).

Two equivalent diagrams




IMC design rules

When P = Py, the transfer function from r to y is P(s)Q(s)-

For perfect reference following, one would like to put @(s) = P(s)™™.
That is impossible for several reasons.

Practical design rules:

» If P(s) is strictly proper, the inverse would have more zeros than
poles. Instead, one can choose

1

7(/13 T 1)" P(s)*l

Q(s) =

where n is large enough to make @ proper. The parameter A
determines the speed of the closed-loop system.

IMC design rules

> If P(s) has unstable zeros, the inverse would be unstable.
Options:

» Remove every unstable factor (—fs + 1) from the plant
numerator before inverting.

» Replace every unstable factor (—fs + 1) with (s + 1).
With this option, only the phase is modified, not the
amplitude function.

> If P(s) includes a time delay, its inverse would have to predict the
future. Instead, the time delay is removed before inverting.

IMC design example 1 — first-order plant

1
P(s) = s+ 1
_ 1 Ts+1
e )_As+1 () T As+1
Q(s) B _ T 1
C(s) = = =t (1 + 7)
1-Q()P(s) 1—-527 4 ST
PI controller

Note that T; = T

This way of tuning a Pl controller is known as lambda tuning

IMC design example 2 — non-minimum phase plant

GRS =y
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B Q(s) _ Essfrll _ v 1
C(s) = 1-Q(s)P(s)  1_ % T 2p <1+ 377)

PI controller

Note that, again, T; = 7

The gain is adjusted in accordance with the fundamental limitation
imposed by the RHP zero in 1/ .
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Dead-time compensation

IMC design for dead-time processes

Consider the plant model
P(s) = Py(s)e™"

Let Co = Q/(1 — QP4) be the controller we would have used without
the delay. Then Q = C()/(l + C()Pl).

The rule of thumb tell us to use the same @ also for systems with
delays. This gives

C(S) _ Q(S) _ Co/(1+ C()Pl)
T 1-Q(s)Pi(s)e=* T 1—e=TP1Cy/(1+ CoPy)
Cs) = Co(s)

1+ (1—e7)Co(s)P1(s)

This modification of the Cy(s) to account for time delays is known as a
Smith predictor.

Smith predictor

Controller

The Smith predictor uses an internal model of the process (with and
without the delay). Ideally Y and Y7 cancel each other and only
feedback from Yy “without delay” is used.

Smith predictor

Controller

» Delay eliminated from denominator
» Closed-loop response greatly simplified




Smith predictor — a success story!

Controller

» Numerous modifications
» Many industrial applications

Otto J.M. Smith listed in the ISA “Leaders of the Pack” list (2003) as
one of the 50 most influential innovators since 1774.

Example: Dead-time compensation

Smith predictor (thick) and standard PI controller (thin)
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Summary

» Q(s) can be designed by hand for simple plants
> Internal model control
» Warning: Cancellation of slow poles can give poor disturbance
rejection
> Q(s) can be found via convex optimization, also for multivariable
plants — see next lecture




