

Dealing with unstable plants

If $P_0(s)$ is unstable, let $C_0(s)$ be some stabilizing controller. Then the previous argument can be applied with P_{zw} , P_{zu} , P_{yw} , and P_{yu} representing the stabilized system.

Example – DC-motor

Assume we want to optimize the closed-loop transfer matrix from (w_1, w_2) to (z_1, z_2) ,

$$G_{zw}(s) = \begin{bmatrix} \frac{P}{1+PC} & \frac{-PC}{1+PC} \\ \frac{1}{1+PC} & \frac{-C}{1+PC} \end{bmatrix}$$

when $P(s) = \frac{20}{s(s+1)}$. How to obtain stable P_{zw} , P_{zu} , P_{yw} , P_{yu} to get

$$G_{zw}(s) = P_{zw}(s) - P_{zu}(s)Q(s)P_{yw}(s)$$

Redrawn diagram for DC-motor example

where $P_c(s) = \frac{P(s)}{1+P(s)} = \frac{20}{s^2+s+20}$ is stable.

Internal model control (IMC)

Feedback is used only if the real process $P_0(\boldsymbol{s})$ deviates from the model $P(\boldsymbol{s}).$

When $P = P_0$, the transfer function from *r* to *y* is P(s)Q(s).

Next lecture: Synthesis by convex optimization

Quite general control synthesis problems can be stated as convex optimization problems in the variable Q(s). The problem could have a quadratic objective, with linear/quadratic constraints, e.g.:

Min

imize
$$\int_{-\infty}^{\infty} |P_{zw}(i\omega) + P_{zu}(i\omega) \sum_{i=1}^{Q(i\omega)} Q_k \phi_k(i\omega) P_{yw}(i\omega)|^2 d\omega \Big\} \text{ quadratic objective}$$

subj. to step response $w_i \to z_j$ is smaller than f_{ijk} at time t_k step response $w_i \to z_j$ is bigger than g_{ijk} at time t_k Bode magnitude $w_i \to z_j$ is smaller than h_{ijk} at ω_k } quadratic constraints

Here $Q(s) = \sum_k Q_k \phi_k(s)$, where ϕ_1, \ldots, ϕ_m are some fixed basis functions, and Q_0, \ldots, Q_m are optimization variables. Once Q(s) has been determined, the controller is obtained as

$$C(s) = \left[I - Q(s)P_{vu}(s)\right]^{-1}Q(s)$$

where $C_0(s) = 1$ stabilizes the plant

Lecture 12 – Outline

The Quola parameterization

Internal model control (IMC)

Dead-time compensation

Two equivalent diagrams

IMC design rules

When $P = P_0$, the transfer function from *r* to *y* is P(s)Q(s).

For perfect reference following, one would like to put $Q(s) = P(s)^{-1}$. That is impossible for several reasons.

Practical design rules:

► If *P*(*s*) is strictly proper, the inverse would have more zeros than poles. Instead, one can choose

$$Q(s) = \frac{1}{(\lambda s+1)^n} P(s)^{-1}$$

where n is large enough to make Q proper. The parameter λ determines the speed of the closed-loop system.

IMC design example 1 — first-order plant

$$P(s) = \frac{1}{\tau s + 1}$$

$$Q(s) = \frac{1}{\lambda s + 1} P(s)^{-1} = \frac{\tau s + 1}{\lambda s + 1}$$

$$C(s) = \frac{Q(s)}{1 - Q(s)P(s)} = \frac{\frac{\tau s + 1}{\lambda s + 1}}{1 - \frac{1}{\lambda s + 1}} = \underbrace{\frac{\tau}{\lambda} \left(1 + \frac{1}{s\tau}\right)}_{\text{Pl controller}}$$

Note that $T_i = \tau$

This way of tuning a PI controller is known as lambda tuning

Lecture 12 – Outline

The Quola parameterization

nternal model control (IMC)

Dead-time compensation

Smith predictor

The Smith predictor uses an internal model of the process (with and without the delay). Ideally Y and Y_1 cancel each other and only feedback from Y_2 "without delay" is used.

IMC design rules

- If P(s) has unstable zeros, the inverse would be unstable. Options:
 - Remove every unstable factor (-βs + 1) from the plant numerator before inverting.
 - Replace every unstable factor (-βs + 1) with (βs + 1).
 With this option, only the phase is modified, not the amplitude function.
- ► If *P*(*s*) includes a time delay, its inverse would have to predict the future. Instead, the time delay is removed before inverting.

IMC design example 2 — non-minimum phase plant

$$P(s) = \frac{-\beta s + 1}{\tau s + 1}$$

$$Q(s) = \frac{(-\beta s + 1)}{(\beta s + 1)} P(s)^{-1} = \frac{\tau s + 1}{\beta s + 1}$$

$$C(s) = \frac{Q(s)}{1 - Q(s)P(s)} = \frac{\frac{\tau s + 1}{\beta s + 1}}{1 - \frac{(-\beta s + 1)}{(\beta s + 1)}} = \frac{\tau}{2\beta} \left(1 + \frac{1}{s\tau}\right)$$
Pl controller

Note that, again, $T_i = \tau$

The gain is adjusted in accordance with the fundamental limitation imposed by the RHP zero in $1/\beta.$

IMC design for dead-time processes

Consider the plant model

$$P(s) = P_1(s)e^{-s\tau}$$

Let $C_0 = Q/(1 - QP_1)$ be the controller we would have used without the delay. Then $Q = C_0/(1 + C_0P_1)$.

The rule of thumb tell us to use the same Q also for systems with delays. This gives

$$\begin{split} C(s) &= \frac{Q(s)}{1 - Q(s)P_1(s)e^{-s\tau}} = \frac{C_0/(1 + C_0P_1)}{1 - e^{-s\tau}P_1C_0/(1 + C_0P_1)}\\ C(s) &= \frac{C_0(s)}{1 + (1 - e^{-s\tau})C_0(s)P_1(s)} \end{split}$$

This modification of the $C_0(s)$ to account for time delays is known as a Smith predictor.

Smith predictor

Closed-loop response greatly simplified

Smith predictor – a success story!

- Numerous modifications
- Many industrial applications

Otto J.M. Smith listed in the ISA "Leaders of the Pack" list (2003) as one of the 50 most influential innovators since 1774.

Summary

- Q(s) can be designed by hand for simple plants
 - Internal model control
 - Warning: Cancellation of slow poles can give poor disturbance rejection
- $\blacktriangleright \ Q(s)$ can be found via convex optimization, also for multivariable plants see next lecture

Example: Dead-time compensation

Smith predictor (thick) and standard PI controller (thin)

