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Course Outline

L1-L5 Specifications, models and loop-shaping by hand

L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach

L12-L14 Controller optimization: Numerical approach

12 Youla parameterization, internal model control
13 Synthesis by convex optimization
14 Controller simplification
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Lecture 12 – Outline

1 The Youla parameterization

2 Internal model control (IMC)

3 Dead-time compensation

[Glad&Ljung Section 8.4]
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Lecture 12 – Outline

1 The Quola parameterization

2 Internal model control (IMC)

3 Dead-time compensation
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Basic idea of Youla and IMC

Assume stable plant P. Model for design:

r y
Σ C(s) P(s)

−1

\
r y

Q(s) P(s)

PC

1+ PC
= PQ

Q =
C

1+ PC

Choose Q to get desired closed-loop properties. Then C =
Q

1− QP
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General idea for Lectures 12–14

Plant

Controller

✛ ✛

✛

✲

control inputs u

controlled variables z

measurements y

distubances w

The choice of controller corresponds to designing a transfer matrix

Q(s), to get desirable properties of the following map from w to z:

z w

Pzw(s) − Pzu(s)Q(s)Pyw(s)

Once Q(s) has been designed, the corresponding controller can be found.
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The Youla (Q) parameterization

[
Pzw Pzu
Pyw Pyu

]

−C(s)

✛ ✛

✛

✲

u

z

y

w

The closed-loop transfer matrix from w to z is

Gzw(s) = Pzw(s) − Pzu(s)Q(s)Pyw(s)

where Q(s) = C(s)
[
I + Pyu(s)C(s)

]−1

The controller is given by C(s) =
[
I − Q(s)Pyu(s)

]−1
Q(s)
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Stability

Suppose the plant P =

[
Pzw Pzu
Pyw Pyu

]
is stable. Then

Stabilty of Q implies stability of Pzw − PzuQPyw

If Q = C
[
I + PyuC

]−1
is unstable, then the closed loop is

unstable.

Hence, all stabilizing controllers are given by

C(s) =
[
I − Q(s)Pyu(s)

]−1
Q(s)

where Q(s) is an arbitrary stable transfer function.
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Dealing with unstable plants

ũ

w

y

z

P0(s)

−C0(s)

−C1(s)

[
Pzw Pzu
Pyw Pyu

]

−C1(s)

✛ ✛

✛

✲

ũ

z

y

w

If P0(s) is unstable, let C0(s) be some stabilizing controller. Then the

previous argument can be applied with Pzw, Pzu, Pyw, and Pyu
representing the stabilized system.
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Next lecture: Synthesis by convex optimization

Quite general control synthesis problems can be stated as convex

optimization problems in the variable Q(s). The problem could have a

quadratic objective, with linear/quadratic constraints, e.g.:

Minimize
∫∞
−∞ pPzw(iω ) + Pzu(iω )

Q(iω )︷ ︸︸ ︷∑

k

Qkφ k(iω ) Pyw(iω )p
2dω

}
quadratic objective

subj. to
step response wi → zj is smaller than fi jk at time tk
step response wi → zj is bigger than �i jk at time tk

}
linear constraints

Bode magnitude wi → zj is smaller than hi jk at ω k
}

quadratic constraints

Here Q(s) =
∑
k Qkφ k(s), where φ1, . . . ,φm are some fixed basis

functions, and Q0, . . . ,Qm are optimization variables.

Once Q(s) has been determined, the controller is obtained as

C(s) =
[
I − Q(s)Pyu(s)

]−1
Q(s)
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Example – DC-motor

+

+

+

+

P(s)C(s)

−1

z2w1

w2

z1

Assume we want to optimize the closed-loop transfer matrix from

(w1,w2) to (z1, z2),

Gzw(s) =




P
1+PC

−PC
1+PC

1
1+PC

−C
1+PC




when P(s) = 20
s(s+1) . How to obtain stable Pzw, Pzu, Pyw, Pyu to get

Gzw(s) = Pzw(s) − Pzu(s)Q(s)Pyw(s) ?
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Stabilizing controller for DC-motor

w1

w2

z1

z2

y u



P 0 P

1 0 1

P 1 P




−C(s)

The plant P(s) = 20
s(s+1) is not stable, so introduce

C(s) = C0(s) + C1(s)

where C0(s) = 1 stabilizes the plant
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Redrawn diagram for DC-motor example

ũ

w1

w2

z1

z2

y

[
P 0 P

1 0 1

P 1 P

]

−1

−C1(s)

y ũ

[
Pc −Pc Pc
1− Pc Pc − 1 1− Pc
Pc 1− Pc Pc

]

−C1(s)

Gzw(s) =

[
Pc −Pc
1− Pc Pc − 1

]
+

[
Pc
1− Pc

]
Q

[
Pc 1− Pc

]

where Pc(s) =
P(s)
1+P(s) =

20
s2+s+20

is stable.
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Lecture 12 – Outline

1 The Quola parameterization

2 Internal model control (IMC)

3 Dead-time compensation
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Internal model control (IMC)

−1

Q(s)

P0(s)

P(s)
r

u

y

+

−

Plant

Controller

Feedback is used only if the real process P0(s) deviates from the

model P(s).

When P = P0, the transfer function from r to y is P(s)Q(s).
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Two equivalent diagrams

−1

Q

P0

P
r

u
y

+
−

−1

P0
r u y

Q
1−QP
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IMC design rules

When P = P0, the transfer function from r to y is P(s)Q(s).

For perfect reference following, one would like to put Q(s) = P(s)−1.
That is impossible for several reasons.

Practical design rules:

If P(s) is strictly proper, the inverse would have more zeros than

poles. Instead, one can choose

Q(s) =
1

(λs+ 1)n
P(s)−1

where n is large enough to make Q proper. The parameter λ
determines the speed of the closed-loop system.
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IMC design rules

If P(s) has unstable zeros, the inverse would be unstable.

Options:

Remove every unstable factor (−β s+ 1) from the plant

numerator before inverting.

Replace every unstable factor (−β s+ 1) with (β s+ 1).
With this option, only the phase is modified, not the

amplitude function.

If P(s) includes a time delay, its inverse would have to predict the

future. Instead, the time delay is removed before inverting.
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IMC design example 1 — first-order plant

P(s) =
1

τ s+ 1

Q(s) =
1

λs+ 1
P(s)−1 =

τ s+ 1

λs+ 1

C(s) =
Q(s)

1− Q(s)P(s)
=

τ s+1
λs+1

1− 1
λs+1

=
τ

λ

(
1+

1

sτ

)

︸ ︷︷ ︸
PI controller

Note that Ti = τ

This way of tuning a PI controller is known as lambda tuning
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IMC design example 2 — non-minimum phase plant

P(s) =
−β s+ 1

τ s+ 1

Q(s) =
(−β s+ 1)

(β s+ 1)
P(s)−1 =

τ s+ 1

β s+ 1

C(s) =
Q(s)

1− Q(s)P(s)
=

τ s+1
β s+1

1− (−β s+1)
(β s+1)

=
τ

2β

(
1+

1

sτ

)

︸ ︷︷ ︸
PI controller

Note that, again, Ti = τ

The gain is adjusted in accordance with the fundamental limitation

imposed by the RHP zero in 1/β .
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Lecture 12 – Outline

1 The Quola parameterization

2 Internal model control (IMC)

3 Dead-time compensation
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IMC design for dead-time processes

Consider the plant model

P(s) = P1(s)e
−sτ

Let C0 = Q/(1− QP1) be the controller we would have used without

the delay. Then Q = C0/(1+ C0P1).

The rule of thumb tell us to use the same Q also for systems with

delays. This gives

C(s) =
Q(s)

1− Q(s)P1(s)e−sτ
=

C0/(1+ C0P1)

1− e−sτ P1C0/(1+ C0P1)

C(s) =
C0(s)

1+ (1− e−sτ )C0(s)P1(s)

This modification of the C0(s) to account for time delays is known as a

Smith predictor.
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Smith predictor

−

−

C0(s) P

P

P1

y1

y

y2

+

+

r u

Plant
Controller

The Smith predictor uses an internal model of the process (with and

without the delay). Ideally Y and Y1 cancel each other and only

feedback from Y2 “without delay” is used.
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Smith predictor

−

−

C0(s) P1e
−sτ

P1e
−sτ

P1

y1

y

y2

+

+

r u

Plant
Controller

Y(s) = e−sτ
C0(s)P1(s)

1+ C0(s)P1(s)
R(s)

Delay eliminated from denominator

Closed-loop response greatly simplified
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Smith predictor – a success story!

−

−

C0(s) P1e
−sτ

P1e
−sτ

P1

y1

y

y2

+

+

r u

Plant
Controller

Numerous modifications

Many industrial applications

Otto J.M. Smith listed in the ISA “Leaders of the Pack” list (2003) as

one of the 50 most influential innovators since 1774.
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Example: Dead-time compensation

Smith predictor (thick) and standard PI controller (thin)

Output

Input

Setpoint
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Summary

Q(s) can be designed by hand for simple plants

Internal model control

Warning: Cancellation of slow poles can give poor disturbance

rejection

Q(s) can be found via convex optimization, also for multivariable

plants – see next lecture
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