# FRTN10 Multivariable Control, Lecture 12

Automatic Control LTH, 2016

#### **Course Outline**

- L1-L5 Specifications, models and loop-shaping by hand
- L6-L8 Limitations on achievable performance
- L9-L11 Controller optimization: Analytic approach
- L12-L14 Controller optimization: Numerical approach
  - Youla parameterization, internal model control
  - Synthesis by convex optimization
  - Controller simplification

#### Lecture 12 – Outline

- The Youla parameterization
- Internal model control (IMC)
- Objective compensation

[Glad&Ljung Section 8.4]

### Lecture 12 – Outline



## **Basic idea of Youla and IMC**

Assume stable plant P. Model for design:

$$P(s) \xrightarrow{Y} P(s) \xrightarrow{Y} P(s)$$

Choose Q to get desired closed-loop properties. Then  $C=\displaystyle rac{Q}{1-QP}$ 

### General idea for Lectures 12–14



The choice of controller corresponds to designing a transfer matrix Q(s), to get desirable properties of the following map from w to z:

Once Q(s) has been designed, the corresponding controller can be found.

# The Youla (Q) parameterization



The closed-loop transfer matrix from w to z is

$$G_{zw}(s) = P_{zw}(s) - P_{zu}(s)Q(s)P_{yw}(s)$$

where  $Q(s) = C(s)[I + P_{yu}(s)C(s)]^{-1}$ 

The controller is given by  $C(s) = \left[I - Q(s)P_{yu}(s)\right]^{-1}Q(s)$ 

# Stability

Suppose the plant 
$$P = \begin{bmatrix} P_{zw} & P_{zu} \\ P_{yw} & P_{yu} \end{bmatrix}$$
 is stable. Then

- Stabilty of Q implies stability of  $P_{zw} P_{zu}QP_{yw}$
- If  $Q = C[I + P_{yu}C]^{-1}$  is unstable, then the closed loop is unstable.

Hence, all stabilizing controllers are given by

$$C(s) = \left[I - Q(s)P_{yu}(s)\right]^{-1}Q(s)$$

where Q(s) is an arbitrary stable transfer function.

## **Dealing with unstable plants**



If  $P_0(s)$  is unstable, let  $C_0(s)$  be some stabilizing controller. Then the previous argument can be applied with  $P_{zw}$ ,  $P_{zu}$ ,  $P_{yw}$ , and  $P_{yu}$  representing the stabilized system.

## Next lecture: Synthesis by convex optimization

Quite general control synthesis problems can be stated as convex optimization problems in the variable Q(s). The problem could have a quadratic objective, with linear/quadratic constraints, e.g.:

$$\begin{array}{ll} \text{Minimize} & \int_{-\infty}^{\infty} |P_{zw}(i\omega) + P_{zu}(i\omega) \underbrace{\sum_{k} Q_{k} \phi_{k}(i\omega)}_{k} P_{yw}(i\omega)|^{2} d\omega \end{array} \right\} \text{ quadratic objective} \\ \text{subj. to} & \begin{array}{l} \text{step response } w_{i} \rightarrow z_{j} \text{ is smaller than } f_{ijk} \text{ at time } t_{k} \\ \text{step response } w_{i} \rightarrow z_{j} \text{ is bigger than } g_{ijk} \text{ at time } t_{k} \end{array} \right\} \text{ linear constraints} \end{array}$$

Bode magnitude  $w_i \rightarrow z_j$  is smaller than  $h_{ijk}$  at  $\omega_k$  } quadratic constraints

Here  $Q(s) = \sum_{k} Q_k \phi_k(s)$ , where  $\phi_1, \dots, \phi_m$  are some fixed basis functions, and  $Q_0, \dots, Q_m$  are optimization variables.

Once Q(s) has been determined, the controller is obtained as  $C(s) = \left[I - Q(s)P_{yu}(s)\right]^{-1}Q(s)$ 

### **Example – DC-motor**



Assume we want to optimize the closed-loop transfer matrix from  $(w_1, w_2)$  to  $(z_1, z_2)$ ,

$$G_{zw}(s) = egin{bmatrix} rac{P}{1+PC} & rac{-PC}{1+PC} \ rac{1}{1+PC} & rac{-C}{1+PC} \end{bmatrix}$$

when  $P(s) = \frac{20}{s(s+1)}$ . How to obtain stable  $P_{zw}$ ,  $P_{zu}$ ,  $P_{yw}$ ,  $P_{yu}$  to get

$$G_{zw}(s) = P_{zw}(s) - P_{zu}(s)Q(s)P_{yw}(s) ?$$

### Stabilizing controller for DC-motor



The plant  $P(s) = rac{20}{s(s+1)}$  is not stable, so introduce  $C(s) = C_0(s) + C_1(s)$ 

where  $C_0(s) = 1$  stabilizes the plant

#### Redrawn diagram for DC-motor example



$$G_{zw}(s) = egin{bmatrix} P_c & -P_c \ 1-P_c & P_c-1 \end{bmatrix} + egin{bmatrix} P_c \ 1-P_c \end{bmatrix} Q \begin{bmatrix} P_c & 1-P_c \end{bmatrix}$$

where  $P_c(s) = \frac{P(s)}{1+P(s)} = \frac{20}{s^2+s+20}$  is stable.

### Lecture 12 – Outline



# Internal model control (IMC)



Feedback is used only if the real process  $P_0(s)$  deviates from the model P(s).

When  $P = P_0$ , the transfer function from *r* to *y* is P(s)Q(s).

# Two equivalent diagrams



## **IMC design rules**

When  $P = P_0$ , the transfer function from *r* to *y* is P(s)Q(s).

For perfect reference following, one would like to put  $Q(s) = P(s)^{-1}$ . That is impossible for several reasons.

Practical design rules:

 If P(s) is strictly proper, the inverse would have more zeros than poles. Instead, one can choose

$$Q(s) = \frac{1}{(\lambda s + 1)^n} P(s)^{-1}$$

where *n* is large enough to make *Q* proper. The parameter  $\lambda$  determines the speed of the closed-loop system.

## **IMC design rules**

- If *P*(*s*) has unstable zeros, the inverse would be unstable. Options:
  - Remove every unstable factor  $(-\beta s + 1)$  from the plant numerator before inverting.
  - Replace every unstable factor (-βs + 1) with (βs + 1).
    With this option, only the phase is modified, not the amplitude function.
- If P(s) includes a time delay, its inverse would have to predict the future. Instead, the time delay is removed before inverting.

## IMC design example 1 — first-order plant

$$\begin{split} P(s) &= \frac{1}{\tau s + 1} \\ Q(s) &= \frac{1}{\lambda s + 1} P(s)^{-1} = \frac{\tau s + 1}{\lambda s + 1} \\ C(s) &= \frac{Q(s)}{1 - Q(s)P(s)} = \frac{\frac{\tau s + 1}{\lambda s + 1}}{1 - \frac{1}{\lambda s + 1}} = \underbrace{\frac{\tau}{\lambda} \left(1 + \frac{1}{s\tau}\right)}_{\text{Pl controller}} \end{split}$$

Note that  $T_i = \tau$ 

This way of tuning a PI controller is known as lambda tuning

## IMC design example 2 — non-minimum phase plant

$$\begin{split} P(s) &= \frac{-\beta s + 1}{\tau s + 1} \\ Q(s) &= \frac{(-\beta s + 1)}{(\beta s + 1)} P(s)^{-1} = \frac{\tau s + 1}{\beta s + 1} \\ C(s) &= \frac{Q(s)}{1 - Q(s)P(s)} = \frac{\frac{\tau s + 1}{\beta s + 1}}{1 - \frac{(-\beta s + 1)}{(\beta s + 1)}} = \underbrace{\frac{\tau}{2\beta} \left(1 + \frac{1}{s\tau}\right)}_{\text{Pl controller}} \end{split}$$

Note that, again,  $T_i = \tau$ 

The gain is adjusted in accordance with the fundamental limitation imposed by the RHP zero in  $1/\beta$ .

### Lecture 12 – Outline



### IMC design for dead-time processes

Consider the plant model

$$P(s) = P_1(s)e^{-s\tau}$$

Let  $C_0 = Q/(1 - QP_1)$  be the controller we would have used without the delay. Then  $Q = C_0/(1 + C_0P_1)$ .

The rule of thumb tell us to use the same Q also for systems with delays. This gives

$$C(s) = \frac{Q(s)}{1 - Q(s)P_1(s)e^{-s\tau}} = \frac{C_0/(1 + C_0P_1)}{1 - e^{-s\tau}P_1C_0/(1 + C_0P_1)}$$
$$C(s) = \frac{C_0(s)}{1 + (1 - e^{-s\tau})C_0(s)P_1(s)}$$

This modification of the  $C_0(s)$  to account for time delays is known as a Smith predictor.

## **Smith predictor**



The Smith predictor uses an internal model of the process (with and without the delay). Ideally Y and  $Y_1$  cancel each other and only feedback from  $Y_2$  "without delay" is used.

# **Smith predictor**



$$Y(s) = e^{-s\tau} \frac{C_0(s)P_1(s)}{1 + C_0(s)P_1(s)} R(s)$$

- Delay eliminated from denominator
- Closed-loop response greatly simplified

### Smith predictor – a success story!



- Numerous modifications
- Many industrial applications

Otto J.M. Smith listed in the ISA "Leaders of the Pack" list (2003) as one of the 50 most influential innovators since 1774.

## **Example: Dead-time compensation**

Smith predictor (thick) and standard PI controller (thin)



#### Summary

- Q(s) can be designed by hand for simple plants
  - Internal model control
  - Warning: Cancellation of slow poles can give poor disturbance rejection
- Q(s) can be found via convex optimization, also for multivariable plants – see next lecture