FRTN10 Multivariable Control, Lecture 11

Automatic Control LTH, 2016

Course Outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance
L9-L11 Controller optimization: Analytic approach
9. Linear-quadratic optimal control
10. Optimal observer-based feedback
11. More on LQG

L12-L14 Controller optimization: Numerical approach

Lecture 11 — Outline

1. Tuning the LQG design parameters
2. Robustness of LQG

3. Integral action, reference values

[Glad&Ljung sections 9.1-9.4 and 5.7]

Recall the main result of LQG

Given white noise (vy,vg) with intensity R and the linear plant
%(t) = Ax(t) + Bu(t) + Nvi(k) Ry Ry
R= |7
¥(t) = Cx(t) + va(2) Ry Ry

consider controllers of the form u = —LXx with
4% = A% + Bu + K[y — C]. The stationary variance

E (xTle + 26T Qrou + uTQzu)
is minimized when
K = (PCT + NR12)R;' L =Q; (SB + Q)7
0=Q; +ATS+SA— (SB + Q12)Q; (SB + Q)"
0=NR;N” + AP + PA" — (PC" + NR12)R;'(PC” + NR5)"
The minimal variance is

tr(SNRNT) 4+ tr[PLT(BTSB + Q2)L]

The LQG controller

Crqa(s) P(s)

[1]
1

The controller transfer function (from —y to u) is given by
Ciqa(s) = L(sI - A+ BL+KC)™'K
» Same order as the (extended) plant model

» Strictly proper (if Rg > 0)

Matlab: reg(P,L,K) or lggreg(Kest,L)
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Tuning the LQG design parameters

How to choose the cost function

» In rare instances, a quadratic cost function follows directly from
the design specifications

> In most cases, @1, @2, @12 must be tuned by the designer to
achieve the desired closed-loop behavior

Starting point:

» Put @12 = 0 and make @1, @2 diagonal
» Make the diagonal elements equal to the inverse value of the
square of the allowed deviation:

x(1)7 Qua(t) + u(t)” Qau(?)

= (iﬁfg>2++ <§"Tg?)2+ <an(§>2+ + (Z";E,?
1 n 1 m

How to tune the cost function

» To make the controller more aggressive, decrease @2 (or,
equivalently, increase @)

» To increase the damping of a state x;, add penalty on xl2 (may
give cross-terms)

» To make a state x; behave more like &; = —ox;, add penalty on
(s 4 arx;)? (gives cross-terms)




Example — Flexible servo

N Y2
7 mi W mo
dy do
EiR
d?y dy1
mlw = _dlﬁ_k(yl —y2) + F(t)
d2 d
mz% = —dzﬁ + k(y1 — y2)

Introduce state variables x1 = y1, X2 = ¥1, X3 = Y2, X4 = Y2

Open loop response
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0.01 o
° —0.01

—o.01
—0.02

—o0.02
—0.03

—0.03
—0.04 0.04
—0.05 —0.05

x, (Vel.1) x, (Vel.2)
0.2

—0.1

0.2

-0.3
o

Penalize velocity error or position error?

Minimize Efxa(£)% + x4(£)2 + u(2)?] or E[x1(2)? + x3(£)% + u(t)?] ?
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When only velocity is penalized, a static position error remains

Position error control

Response of x1(¢), x3(¢), u(¢) = —Lx(¢) to impulse disturbance.
Q1 = diag{q,0,9,0} (¢ =0,1,10,100), Q12 =0, @2 = 1.
Large q = fast response but large control signal.

Impulse Response
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Position+velocity error control

To reduce oscillations, penalize also velocity error. Comparision
between @; = diag{100,0,100,0} and
1 = diag{100, 100, 100,100}.

Impulse Response
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How to choose/tune the noise intensities

» If no accurate noise characterization is available, as a starting
pointput N = B, Ry = I, and Ry = pl, where p is a scalar

» To make the controller less sensitive to measurement noise,
increase Ry (also makes the controller less aggressive)
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Robustness of LQG

Robustness of LQG controllers

Candidate for the best abstract ever:

Guaranteed Margins for LQG Regulators
JOHN C. DOYLE

Abstract—There are none.

INTRODUCTION

Considerable attention has been given lately to the issue of robustness
of linear—quadratic (LQ) regulators. The recent work by Safonov and
Athans [1] has extended to the multivariable case the now well-known
guarantee of 60° phase and 6 dB gain margin for such controllers.
However, for even the single-input, single-output case there has re-
mained the question of whether there exist any guaranteed margins for
the full LQG (Kalman filter in the loop) regulator. By counterexample,
this note answers that question; there are none.

[IEEE Transactions on Automatic Control, 23:4, 1978]




Example (Doyle-Stein, 1979)

Nice minimum-phase SISO plant, no fundamental limitations:

a= (1 7). m=[o) v=[G) =002

1 V35

Q1=80[\/?g 35], Q=1 Ri=1 Ry=1

gives

» Control poles: —7 £ 21
» Observer poles: —7.02 + 1.95¢

Example (Doyle-Stein, 1979)

Nyquist Diagram
From: In(1) To: u1
T

Imaginary Axis
T

5 -1
Real Axis

M, =48, ¢, = 14.8°

Loop transfer recovery

The robustness of an LQG controller can often be improved by either

» adding a penalty proportional to CTC to @,
» adding a penalty proportional to BBT to NR{NT

Makes the loop transfer function more similar to the state feedback
(LQ) loop gain

Price: Higher controller gain
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Integral action, reference values

Integral action via disturbance modeling

Extend the plant model with a low-frequency disturbance acting on the
process input:
‘|

1
S+ ¢

P(s) ——

The Kalman filter will include a (near) integrator

Easy to generalize to other disturbance models

Integral action via explicit integration

Add explicit integrators on the plant outputs

Gives extended plant model

()= (& o) (&) + () (5]

Extended state feedback law from LQ design:

u=-(L L) []

Including a penalty on x; in the LQ design makes x — 0 in case of a
constant input load disturbance

Handling reference values

Simple solution:
u(t) = —L&(¢) + L,r(t)

Assuming z = M x and dim z = dim «, select
L, =[M(BL—-A)'B]™!

to ensure static gain I from r to z (in absence of disturbances)

A reference filter to further shape G, (s) can be added if needed

LQG example — DC-servo

U1 U2
u z y
C(s) P(s)
[1]
-
Process: P(s) = %

Cost function: J = E (2% + u?)

White noise intensities: R =1, Rgo =1, R12 =0




Gang of four

LQG design
State-space model:
A B N
—_—— — —
2 [0 0] |x n 20 n 20
g T |1 =1 x| T O [¥ T 0|

y = X9 + Uy 2= X9

Cost matrices:

Q1={g 2] Q=1

Solving the Riccati equations gives the optimal controller

d
SE=(A-BL)E+ K[y~ Cil u=-Lx
where
20.0000
L =[02702 0.7298] K= {5,4031}
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Nonzero static gain in H% indicates poor disturbance rejection

Integral action

Gang of four with integral action

Add explicit integrator on the output and extend the model: PC/(1+PC) P/(1+PC)
10! 10'
Ae Be Ne z 2
—_—~— — — % 10° % 10°
X1 0 0 Of |x 20 20 3 3
Gg| = |1 =1 Of |xg| + [0 u+|0]|v; g7 g
X 0 1 Of |« 0 0 102 102
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Minimization of x5 + 0.01x} + u* gives the optimal state feedback 10 10
= _Le [55 xi] E 10 g 10°
éwo‘ gﬂo !
where = s
L. =[0.2751 0.7569 —0.1] 10 ; : . 0t ‘ .
10 10 10 10 10 10 10 10
. Frequency (rad/s) Frequency (rad/s)
We use the same Kalman filter as before
Summary of LQG Alternative norms for optimization
Advantages controlled variables z distubances v
- [————
> Works fine with multivariable models Plant
» Observer structure ties to reality
> Always stabilizing measurements y control inputs u
» Well developed theory, analytic solutions Controller

Disadvantages

» High-order controllers (same order as the extended plant model)
» Sometimes hard to choose weights

» No robustness guarantees — must always check the resulting
controller!

H, optimal control:

Minimize maa)lx”sz(ia))H

Can be solved using a couple of Riccati equations, similar to the LQG
problem




