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1. Tuning the LQG design parameters

2. Robustness of LQG

3. Integral action, reference values

[Glad&Ljung sections 9.1–9.4 and 5.7]

Recall the main result of LQG

Given white noise (v1, v2) with intensity R and the linear plant

{
ẋ(t) = Ax(t) + Bu(t) + Nv1(k)
y(t) = Cx(t) + v2(t)

R =
[

R1 R12
RT

12 R2

]

consider controllers of the form u = −Lx̂ with
d
dt x̂ = Ax̂ + Bu+ K [y− Cx̂]. The stationary variance

E
(

xT Q1x + 2xT Q12u+ uT Q2u
)

is minimized when

K = (PCT + N R12)R−1
2 L = Q−1

2 (SB + Q12)T

0 = Q1 + AT S+ SA− (SB + Q12)Q−1
2 (SB + Q12)T

0 = N R1 NT + AP+ PAT − (PCT + N R12)R−1
2 (PCT + N R12)T

The minimal variance is

tr(SN R1 NT) + tr[PLT(BT SB + Q2)L]

The LQG controller

CLQG(s) P(s)

−1

u y

The controller transfer function (from −y to u) is given by

CLQG(s) = L(sI − A+ B L + K C)−1 K

◮ Same order as the (extended) plant model

◮ Strictly proper (if R2 > 0)

Matlab: reg(P,L,K) or lqgreg(Kest,L)
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Tuning the LQG design parameters

Robustness of LQG

Integral action, reference values

How to choose the cost function

◮ In rare instances, a quadratic cost function follows directly from

the design specifications

◮ In most cases, Q1, Q2, Q12 must be tuned by the designer to

achieve the desired closed-loop behavior

Starting point:

◮ Put Q12 = 0 and make Q1, Q2 diagonal

◮ Make the diagonal elements equal to the inverse value of the

square of the allowed deviation:

x(t)T Q1x(t) + u(t)T Q2u(t)

=
(

x1(t)
xmax

1

)2

+ ⋅ ⋅ ⋅+
(

xn(t)
xmax

n

)2

+
(

u1(t)
umax

1

)2

+ ⋅ ⋅ ⋅+
(

um(t)
umax

m

)2

How to tune the cost function

◮ To make the controller more aggressive, decrease Q2 (or,

equivalently, increase Q1)

◮ To increase the damping of a state xi, add penalty on ẋ2
i (may

give cross-terms)

◮ To make a state xi behave more like ẋi = −α xi, add penalty on

(ẋi +α xi)2 (gives cross-terms)
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Example — Flexible servo

F
m1 m2

y1 y2

d1 d2

k

m1
d2y1

dt2 = −d1
dy1

dt
− k(y1 − y2) + F(t)

m2
d2y2

dt2 = −d2
dy2

dt
+ k(y1 − y2)

Introduce state variables x1 = y1, x2 = ẏ1, x3 = y2, x4 = ẏ2

Open loop response

0 2 4 6
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

x
1
 (Pos.1)

0 2 4 6
−0.3

−0.2

−0.1

0

0.1

0.2

x
2
 (Vel.1)

0 2 4 6
−0.05

−0.04

−0.03

−0.02

−0.01

0

x
3
 (Pos.2)

0 2 4 6
−0.3

−0.2

−0.1

0

0.1

0.2

x
4
 (Vel.2)

Penalize velocity error or position error?

Minimize E[x2(t)2 + x4(t)2 + u(t)2] or E[x1(t)2 + x3(t)2 + u(t)2] ?
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When only velocity is penalized, a static position error remains

Position error control

Response of x1(t), x3(t), u(t) = −Lx(t) to impulse disturbance.

Q1 = diag{q, 0, q, 0} (q = 0, 1, 10, 100), Q12 = 0, Q2 = 1.

Large q[ fast response but large control signal.
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Position+velocity error control

To reduce oscillations, penalize also velocity error. Comparision

between Q1 = diag{100, 0, 100, 0} and

Q1 = diag{100, 100, 100, 100}.
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How to choose/tune the noise intensities

◮ If no accurate noise characterization is available, as a starting

point put N = B, R1 = I, and R2 = ρ I, where ρ is a scalar

◮ To make the controller less sensitive to measurement noise,

increase R2 (also makes the controller less aggressive)
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Tuning the LQG design parameters

Robustness of LQG

Integral action, reference values

Robustness of LQG controllers

Candidate for the best abstract ever:

[IEEE Transactions on Automatic Control, 23:4, 1978]
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Example (Doyle–Stein, 1979)

Nice minimum-phase SISO plant, no fundamental limitations:

A =


−4 −3
1 0


 , B =




1
0


 , N =



−61
35


 , C =


1 2




Q1 = 80



1
√

35√
35 35


 , Q2 = 1, R1 = 1, R2 = 1

gives

◮ Control poles: −7± 2i
◮ Observer poles: −7.02± 1.95i

Example (Doyle–Stein, 1979)
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Loop transfer recovery

The robustness of an LQG controller can often be improved by either

◮ adding a penalty proportional to CTC to Q1

◮ adding a penalty proportional to B BT to N R1 NT

Makes the loop transfer function more similar to the state feedback

(LQ) loop gain

Price: Higher controller gain
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Tuning the LQG design parameters

Robustness of LQG

Integral action, reference values

Integral action via disturbance modeling

Extend the plant model with a low-frequency disturbance acting on the

process input:

u

w

y
Σ P(s)

1
s+ ǫ

The Kalman filter will include a (near) integrator

Easy to generalize to other disturbance models

Integral action via explicit integration

Add explicit integrators on the plant outputs

Gives extended plant model




ẋ
ẋi


 =




A 0
C 0






x
xi


+




B
0


u+




N
0


 v1

Extended state feedback law from LQ design:

u = −

L Li






x
xi




Including a penalty on xi in the LQ design makes x → 0 in case of a

constant input load disturbance

Handling reference values

Simple solution:

u(t) = −Lx̂(t) + Lrr(t)

Assuming z = M x and dim z = dim u, select

Lr = [M(B L − A)−1 B]−1

to ensure static gain I from r to z (in absence of disturbances)

A reference filter to further shape Gyr(s) can be added if needed

LQG example — DC-servo

P(s)C(s)

−1

ΣΣ
u

v1 v2

z y

Process: P(s) = 20
s(s+ 1)

Cost function: J = E (z2 + u2)

White noise intensities: R1 = 1, R2 = 1, R12 = 0
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LQG design

State-space model:

[
ẋ1
ẋ2

]
=

A︷ ︸︸ ︷[
0 0
1 −1

] [
x1
x2

]
+

B︷ ︸︸ ︷[
20
0

]
u+

N︷ ︸︸ ︷[
20
0

]
v1

y= x2 + v2 z = x2

Cost matrices:

Q1 =
[
0 0
0 1

]
Q2 = 1

Solving the Riccati equations gives the optimal controller

d
dt

x̂ = (A− B L)x̂ + K [y− Cx̂] u = −Lx̂

where

L =
[
0.2702 0.7298

]
K =

[
20.0000
5.4031

]

Gang of four
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Nonzero static gain in P
1+PC indicates poor disturbance rejection

Integral action

Add explicit integrator on the output and extend the model:




ẋ1
ẋ2
ẋi


 =

Ae︷ ︸︸ ︷


0 0 0
1 −1 0
0 1 0







x1
x2
xi


+

Be︷ ︸︸ ︷


20
0
0


u+

Ne︷ ︸︸ ︷


20
0
0


 v1

y= x2 + v2, z1 = x2, z2 = xi

Minimization of x2
2 + 0.01x2

i + u2 gives the optimal state feedback

u = −Le

[
x̂ xi

]

where

Le =
[
0.2751 0.7569 −0.1

]

We use the same Kalman filter as before

Gang of four with integral action
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Summary of LQG

Advantages

◮ Works fine with multivariable models

◮ Observer structure ties to reality

◮ Always stabilizing

◮ Well developed theory, analytic solutions

Disadvantages

◮ High-order controllers (same order as the extended plant model)

◮ Sometimes hard to choose weights

◮ No robustness guarantees – must always check the resulting

controller!

Alternative norms for optimization

Plant

Controller

✛ ✛

✛

✲
control inputs u

controlled variables z

measurements y

distubances v

H∞ optimal control:

Minimize max
ω
qGzv(iω )q

Can be solved using a couple of Riccati equations, similar to the LQG

problem
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