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L1-L5 Specifications, models and loop-shaping by hand

L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach

9 Linear-quadratic optimal control
10 Optimal observer-based feedback
11 More on LQG

L12-L14 Controller optimization: Numerical approach
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Lecture 11 – Outline

1 Tuning the LQG design parameters

2 Robustness of LQG

3 Integral action, reference values

[Glad&Ljung sections 9.1–9.4 and 5.7]
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Recall the main result of LQG

Given white noise (v1,v2) with intensity R and the linear plant
{
ẋ(t) = Ax(t) + Bu(t) + Nv1(k)
y(t) = Cx(t) + v2(t)

R =
[
R1 R12
RT12 R2

]

consider controllers of the form u = −Lx̂ with
d
dt
x̂ = Ax̂ + Bu+ K [y− Cx̂]. The stationary variance

E

(
xTQ1x + 2xTQ12u+ uTQ2u

)

is minimized when

K = (PCT + NR12)R−12 L = Q−12 (SB + Q12)T

0 = Q1 + ATS+ SA− (SB + Q12)Q−12 (SB + Q12)T

0 = NR1NT + AP+ PAT − (PCT + NR12)R−12 (PCT + NR12)T

The minimal variance is

tr(SNR1NT) + tr[PLT(BTSB + Q2)L]
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The LQG controller

CLQG(s) P(s)

−1

u y

The controller transfer function (from −y to u) is given by

CLQG(s) = L(sI − A+ BL + KC)−1K

Same order as the (extended) plant model

Strictly proper (if R2 > 0)

Matlab: reg(P,L,K) or lqgreg(Kest,L)
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Lecture 11 – Outline

1 Tuning the LQG design parameters

2 Robustness of LQG

3 Integral action, reference values
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How to choose the cost function

In rare instances, a quadratic cost function follows directly from

the design specifications

In most cases, Q1, Q2, Q12 must be tuned by the designer to

achieve the desired closed-loop behavior

Starting point:

Put Q12 = 0 and make Q1, Q2 diagonal

Make the diagonal elements equal to the inverse value of the

square of the allowed deviation:

x(t)TQ1x(t) + u(t)TQ2u(t)

=
(
x1(t)
xmax1

)2
+ ⋅ ⋅ ⋅+

(
xn(t)
xmaxn

)2
+
(
u1(t)
umax1

)2
+ ⋅ ⋅ ⋅+

(
um(t)
umaxm

)2
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How to tune the cost function

To make the controller more aggressive, decrease Q2 (or,

equivalently, increase Q1)

To increase the damping of a state xi, add penalty on ẋ2i (may

give cross-terms)

To make a state xi behave more like ẋi = −α xi, add penalty on

(ẋi +α xi)2 (gives cross-terms)
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Example — Flexible servo

F
m1 m2

y1 y2

d1 d2

k

m1
d2y1

dt2
= −d1

dy1

dt
− k(y1 − y2) + F(t)

m2
d2y2

dt2
= −d2

dy2

dt
+ k(y1 − y2)

Introduce state variables x1 = y1, x2 = ẏ1, x3 = y2, x4 = ẏ2
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Open loop response
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Penalize velocity error or position error?

Minimize E[x2(t)2 + x4(t)2 + u(t)2] or E[x1(t)2 + x3(t)2 + u(t)2] ?
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When only velocity is penalized, a static position error remains
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Position error control

Response of x1(t), x3(t),u(t) = −Lx(t) to impulse disturbance.

Q1 = diag{q, 0, q, 0} (q = 0, 1, 10, 100), Q12 = 0, Q2 = 1.
Large q[ fast response but large control signal.
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Position+velocity error control

To reduce oscillations, penalize also velocity error. Comparision

between Q1 = diag{100, 0, 100, 0} and

Q1 = diag{100, 100, 100, 100}.
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How to choose/tune the noise intensities

If no accurate noise characterization is available, as a starting

point put N = B, R1 = I, and R2 = ρ I, where ρ is a scalar

To make the controller less sensitive to measurement noise,

increase R2 (also makes the controller less aggressive)
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Lecture 11 – Outline

1 Tuning the LQG design parameters

2 Robustness of LQG

3 Integral action, reference values
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Robustness of LQG controllers

Candidate for the best abstract ever:

[IEEE Transactions on Automatic Control, 23:4, 1978]
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Example (Doyle–Stein, 1979)

Nice minimum-phase SISO plant, no fundamental limitations:

A =


−4 −3
1 0


 , B =



1

0


 , N =



−61
35


 , C =


1 2




Q1 = 80


1

√
35√

35 35


 , Q2 = 1, R1 = 1, R2 = 1

gives

Control poles: −7± 2i
Observer poles: −7.02± 1.95i
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Example (Doyle–Stein, 1979)
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Loop transfer recovery

The robustness of an LQG controller can often be improved by either

adding a penalty proportional to CTC to Q1

adding a penalty proportional to BBT to NR1N
T

Makes the loop transfer function more similar to the state feedback

(LQ) loop gain

Price: Higher controller gain
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1 Tuning the LQG design parameters

2 Robustness of LQG

3 Integral action, reference values

Automatic Control LTH, 2016 FRTN10 Multivariable Control, Lecture 11



Integral action via disturbance modeling

Extend the plant model with a low-frequency disturbance acting on the

process input:
replacements

u

w

y

Σ P(s)

1

s+ ǫ

The Kalman filter will include a (near) integrator

Easy to generalize to other disturbance models
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Integral action via explicit integration

Add explicit integrators on the plant outputs

Gives extended plant model



ẋ

ẋi


 =



A 0

C 0





x

xi


+



B

0


u+



N

0


 v1

Extended state feedback law from LQ design:

u = −

L Li





x

xi




Including a penalty on xi in the LQ design makes x→ 0 in case of a

constant input load disturbance
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Handling reference values

Simple solution:

u(t) = −Lx̂(t) + Lrr(t)

Assuming z = Mx and dim z = dimu, select

Lr = [M(BL − A)−1B]−1

to ensure static gain I from r to z (in absence of disturbances)

A reference filter to further shape Gyr(s) can be added if needed
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LQG example — DC-servo

P(s)C(s)

−1

ΣΣ
u

v1 v2

z y

Process: P(s) = 20

s(s+ 1)

Cost function: J = E (z2 + u2)

White noise intensities: R1 = 1, R2 = 1, R12 = 0
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LQG design

State-space model:

[
ẋ1
ẋ2

]
=

A︷ ︸︸ ︷[
0 0

1 −1

] [
x1
x2

]
+

B︷ ︸︸ ︷[
20

0

]
u+

N︷ ︸︸ ︷[
20

0

]
v1

y= x2 + v2 z = x2

Cost matrices:

Q1 =
[
0 0

0 1

]
Q2 = 1

Solving the Riccati equations gives the optimal controller

d

dt
x̂ = (A− BL)x̂ + K [y− Cx̂] u = −Lx̂

where

L =
[
0.2702 0.7298

]
K =

[
20.0000

5.4031

]
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Gang of four
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Nonzero static gain in P
1+PC indicates poor disturbance rejection
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Integral action

Add explicit integrator on the output and extend the model:



ẋ1
ẋ2
ẋi


 =

Ae︷ ︸︸ ︷

0 0 0

1 −1 0
0 1 0






x1
x2
xi


+

Be︷ ︸︸ ︷

20

0

0


u+

Ne︷ ︸︸ ︷

20

0

0


 v1

y= x2 + v2, z1 = x2, z2 = xi

Minimization of x22 + 0.01x2i + u2 gives the optimal state feedback

u = −Le
[
x̂ xi

]

where

Le =
[
0.2751 0.7569 −0.1

]

We use the same Kalman filter as before
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Gang of four with integral action
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Summary of LQG

Advantages

Works fine with multivariable models

Observer structure ties to reality

Always stabilizing

Well developed theory, analytic solutions

Disadvantages

High-order controllers (same order as the extended plant model)

Sometimes hard to choose weights

No robustness guarantees – must always check the resulting

controller!
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Alternative norms for optimization

Plant

Controller

✛ ✛

✛

✲

control inputs u

controlled variables z

measurements y

distubances v

H∞ optimal control:

Minimize max
ω
qGzv(iω )q

Can be solved using a couple of Riccati equations, similar to the LQG

problem
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