FRTN10 Multivariable Control, Lecture 9

Automatic Control LTH, 2016

Course Outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance
L9-L11 Controller optimization: Analytic approach
9. Linear-quadratic optimal control
10. Optimal observer-based feedback
11. More on LQG

L12-L14 Controller optimization: Numerical approach

Lecture 9 — Outline

1. Dynamic programming
2. The Riccati equation
3. Optimal state feedback

4. Stability and robustness

Sections 9.1-9.4 + 5.7 in the book treat essentially the same material
as we cover in lectures 9-11. However, the main derivation of the LQG
controller in 9.A and 18.5 is different.

Math repetition

Suppose the matrix @ is symmetric: @ = Q7. Then

> @ > 0 means that x”Qx > O forany x # 0

» True iff all eigenvalues of @ are positive.
» We say that @ is positive definite.

> @ >0 meansthatx”Qx > Oforany x # 0
» True iff all eigenvalues of @ are non-negative.
» We say that @ is positive semidefinite.

A general optimization setup

controlled variables z distubances w
B E—— D —

Plant

measurements y control inputs u

Controller

The objective is to find a controller that optimizes the transfer matrix
G () from disturbances (and setpoints) w to controlled outputs z.

Lectures 9-11: Problems with analytic solutions
Lectures 12—14: Problems with numeric solutions

Today’s problem: Optimal state feedback

X
c—an(?) )

Plant

state measurement x u
Controller

wmze [ (0)" (& %) (9]

subject to %(t) = Ax(¢) + Bu(t), x(0) =x

Why linear-quadratic optimal control?

» Analytic solution

» Always stabilizing

» Works for MIMO systems

» Guaranteed robustness (in the state feedback case)

» Foundation for more advanced methods like model-predictive
control (MPC)
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Dynamic programming




Mini-problem

Determine ug and u; if the objective is to minimize
€+ ad+udtdd
when

X1 =%Xo+Uo

X9 = X1+ U1

Hint: Go backwards in time.

Solution (1) to mini-problem

2 2 2 2 2 2 2 2

ug, u1) = x7 +x5 +upg+uy = (xo+uo) + ((xo+uo)tui) +ug+u

f(uo, u1) = 27 + x5 + ug + uy = (x0 + uo)” + ((xo + uo) +u1) otur
X1 X1

= 2x0% + (2uy + 4ug) xo + 2uour + 21 + 3ug?

%=4x0+2u1+6u0=0
1o}
£=2x0+2u0+4u1=0

(Don’t forget to check whether maximum or minimum....)
6 2| |uo| _ |—4x0o uo| _ [—2xo o _8.
o 3 L] - ] = ] - [ = e
This sequence depends on the initial value x only (no feedback). Unwieldy

for larger problems. For robustness and computational reasons it is better to
have a feedback solution!

Solution (2) to mini-problem

Better solution: Break the problem into smaller parts that can be
solved sequentially:

min {x% + a2 +ul+ u%} = min{x% + u + min {x% + u%} (xl)}
Ug,U1 uo uy
| ——

J1(x1)

Jl(xl) = n;lln {(xl + u1)2 + u%} =...
Gives

uy = —§x1

Quadratic optimal cost

It can be shown that the optimal cost on the time interval [¢, co) is
quadratic:

zin [ () @ (2 - rrose

when
x(t) = Ax(t) + Bu(?)

_ (@1 @
Q_[sz Q2]>0

and

Dynamic programming, Richard E. Bellman, 1957

An optimal trajectory on the time in-
terval [t, T'| must be optimal also on
each of the subintervals [¢, ¢ + €] and
[t+e€ T].

Dynamic programming in linear-quadratic control

Let x; = x(t), u = u(t). For a time step of length ¢,
x(t+e€) =x + (Ax; + Bus)e ase—0

xtTSx, = min /too [x(‘r)]TQ [x(r)] dr

uft,00) u(1) u(7)
T 00 T
~n () e (5] e [ () e (:63) o}
= rrgn { (2 Quxe + 227 Quaus + uf Qouy)e
+ [x; + (Ax, + Bu,)e] TS {x, + (Ax; + But)e} }

by definition of S. Neglecting €2 gives Bellman’s equation:

0= nbin { (x,Tlet + 2x7 Quous + utTQzu,) + 2x] S (Ax; + But)}
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The Riccati equation

Completion of squares

Suppose @, > 0. Then

xTQxx + 2xTquu + uTQuu
= (u+Q,'Qx) Qulu + @' Q%) + x7(@x — Q@' Q1 )x
is minimized by

u= _QJIQZ‘ux

The minimum is

xT(Qx - quQ;lQZ‘u)x




The Riccati equation

Completion of squares in Bellman’s equation gives
0= Hilln { (xtTlet + 227 Qrou; + utTqu,) +2x7S(Ax; + Bu,)}
= n’bltll {xtT[Ql +ATS + SA)x, + 247 [Q12 + SBlus + utTQ2ut}
=7 (@ +A”S +SA— (SB + Q12)@3"(SB + Q)" )z
with minimum attained for
u =—-Q5 (SB+ Q12)"x,
The equation
0=Q; +ATS +SA—(SB +Q12)Q:*(SB + Q12)"

is called the algebraic Riccati equation

Jocopo Francesco Riccati, 1676—1754

Solving algebraic Riccati equations in Matlab

care Solve continuous-time algebraic Riccati equations.

[X,L,G] = care(4,B,Q,R,S,E) computes the unique stabilizing
solution X of the continuous-time algebraic Riccati equation
-1
A’XE + E’XA - (E’XB + S)R (B’XE + 8°) + Q=0 .

When omitted, R, S and E are set to the default values R=I,
S=0, and E=I. Beside the solution X, care also returns the
gain matrix
-1
G =R (B’XE + S?)

and the vector L of closed-loop eigenvalues (i.e.,
EIG(A-B*G,E)) .
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Optimal state feedback

Linear-quadratic optimal control

Control problem:
Minimize /O (T OQue(t) + 267()Quau(t) + 1T () Quu(r))dt

subjectto  %(¢) = Ax(t) + Bu(t), x(0)=xo

Solution: Assume (A, B) controllable. Then there is a unique S > 0
solving the algebraic Riccati equation

0=Q:+ATS +SA— (SB + Q12)@;'(SB + Q12)7

The optimal control law is u = —Lx with L = Q5 (SB + Q12)7 .

The minimal cost is xJ Sxo.

Remarks

Note that the optimal control law does not depend on xg.

The optimal feedback gain L is static since we are solving an
infinite-horizon problem.

(LQ theory can also be applied to finite-horizon problems and problems with
time-varying system matrices. We then obtain a Riccati differential equation
for S(¢) and a time-varying state feedback, u(¢) = —L(¢)x(¢))

Example: Control of an integrator

For x(t) = u(t), x(0) = xo,
I [ 2 2
Minimize J_/O {x(t) + pu(t) }dt
0=1-8%/p = S=p
L=S/p=1/yp = u=-z/Vp
i=—x/Vp = x = xge VP

J* = xd'Sxo = x¢/p

Riccati equation

Controller
Closed loop system

Optimal cost

What values of p give the fastest response? Why?
What values of p give smallest optimal cost? Why?

Stochastic interpretation of LQ control

()

white noise v
Plant
state measurement x u
Controller

J=E {xTle + 2xTQ12u + uTqu}
%(t) = Ax(t) + Bu(t) + v(t)

Minimize
subject to

where v is white noise with intensity R. Same Riccati solution S as in
the deterministic case. The optimal cost is

J* =tr SR
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Stability and robustness

Theorem: Stability of the closed-loop system

Assume that

Q= [Ql le] >0

QL @
and that there exists a solution S > 0 to the algebraic Riccati
equation. Then the optimal controller u(¢) = —Lx(¢) gives an

asymptotically stable closed-loop system %(t) = (A — BL)x(t).
Proof:

d r Tg, T
P ()Sx(t) = 2x" Sx = 2x" S(Ax + Bu)

= —(xTle + 22T Qou + uTQ2u) < Oforx(¢) #0

Hence x7(¢)Sx(t) is decreasing and tends to zero as ¢t — co.

Solving the LQ problem in Matlab

lgr Linear-quadratic regulator design for state space systems

[K,S,E] = 1qr(SYS,Q,R,N) calculates the optimal gain matrix K
such that:

*

For a continuous-time state-space model SYS, the state-
feedback law u = -Kx minimizes the cost function

J = Integral {x’Qx + uw’Ru + 2*x’Nu} dt
subject to the system dynamics dx/dt = Ax + Bu
The matrix N is set to zero when omitted. Also returned are

the solution S of the associated algebraic Riccati equation
and the closed-loop eigenvalues E = EIG(A-B*K).

Example — Double integrator

w=fod) 2= e (s3) emp 0=

States and inputs (dotted) for p = 0.01, p=0.1, p =1, p =10

Closed loop poles:
s=2"12p71/4(—144)

Robustness of optimal state feedback

Nyquist Diagram

Imaginary Axis

T R R—

Real Axis

The distance from the loop gain L(i@I — A)™'B to —1 is never
smaller than 1. This is always true(!) for linear-quadratic optimal state
feedback when @1 > 0, @12 = 0 and @2 = p > 0 is scalar. Hence
the phase margin is at least 60° and the gain margin is infinite!

Proof of robustness

Using the Riccati equation
0=Q:+ATS+SA—LTQ;L, L =@Q;'(SB+ Q)"

it is straightforward to verify (see [G&L Lemma 5.2]) that

. _1p]* . = io —A)"1B]" iw—A)"'B
[1+Lio—4)"B]" @ [+ Liio—4)"B] = [(”” A } [3’;12 %ﬂ {(”" A ]
In particular, with @ >0, Q12 =0,Q2=p >0

[1+L(io — )7 B]" p [1+ L(io — 4)7'B] = B [(io — A)7']'Q1(io — A)'B + p

>p
Dividing by p gives

1+ L(io—A)'B2>1

Next lecture: Linear-quadratic-Gaussian control

distubances w
le—

controlled variables z
]

Plant

measurements y control inputs u

Controller

For a linear plant, minimize a quadratic function of the map from
disturbances w to controlled variables z




