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Course Outline

L1-L5 Specifications, models and loop-shaping by hand

L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach

9 Linear-quadratic optimal control
10 Optimal observer-based feedback
11 More on LQG

L12-L14 Controller optimization: Numerical approach
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Lecture 9 – Outline

1 Dynamic programming

2 The Riccati equation

3 Optimal state feedback

4 Stability and robustness

Sections 9.1–9.4 + 5.7 in the book treat essentially the same material

as we cover in lectures 9–11. However, the main derivation of the LQG

controller in 9.A and 18.5 is different.
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Math repetition

Suppose the matrix Q is symmetric: Q = QT . Then

Q > 0 means that xTQx > 0 for any x ,= 0
True iff all eigenvalues of Q are positive.

We say that Q is positive definite.

Q ≥ 0 means that xTQx ≥ 0 for any x ,= 0
True iff all eigenvalues of Q are non-negative.

We say that Q is positive semidefinite.
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A general optimization setup

Plant

Controller

✛ ✛

✛

✲

control inputs u

controlled variables z

measurements y

distubances w

The objective is to find a controller that optimizes the transfer matrix

Gzw(s) from disturbances (and setpoints) w to controlled outputs z.

Lectures 9–11: Problems with analytic solutions

Lectures 12–14: Problems with numeric solutions
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Today’s problem: Optimal state feedback

Plant

Controller

✛ ✛

✛

✲

u

z = Q1/2
(
x

u

)

x0

state measurement x

Minimize

∫ ∞

0





x(t)
u(t)





T



Q1 Q12
QT12 Q2









x(t)
u(t)



 dt

subject to ẋ(t) = Ax(t) + Bu(t), x(0) = x0
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Why linear-quadratic optimal control?

Analytic solution

Always stabilizing

Works for MIMO systems

Guaranteed robustness (in the state feedback case)

Foundation for more advanced methods like model-predictive

control (MPC)
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Lecture 9 – Outline

1 Dynamic programming

2 The Riccati equation

3 Optimal state feedback

4 Stability and robustness
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Mini-problem

Determine u0 and u1 if the objective is to minimize

x21 + x22 + u20 + u21

when

x1 = x0 + u0
x2 = x1 + u1

Hint: Go backwards in time.
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Solution (1) to mini-problem

f (u0, u1) = x21 + x22 + u20 + u21 = (x0 + u0︸ ︷︷ ︸

x1

)2 + ((x0 + u0)
︸ ︷︷ ︸

x1

+u1)2 + u20 + u21

= 2x02 + (2u1 + 4u0) x0 + 2u0u1 + 2u12 + 3u02

� f
�u0

= 4x0 + 2u1 + 6u0 = 0

� f
�u1

= 2x0 + 2u0 + 4u1 = 0

(Don’t forget to check whether maximum or minimum. . . )

[
6 2

2 4

] [
u0
u1

]

=
[
−4x0
−2x0

]

=[
[
u0
u1

]

=
[
− 3
5
x0

− 1
5
x0

]

=[ fmin =
3

5
x20

This sequence depends on the initial value x0 only (no feedback). Unwieldy

for larger problems. For robustness and computational reasons it is better to

have a feedback solution!
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Solution (2) to mini-problem

Better solution: Break the problem into smaller parts that can be

solved sequentially:

min
u0,u1

{

x21 + x22 + u20 + u21
}

= min
u0

{

x21 + u20+minu1
{

x22 + u21
}

(x1)
︸ ︷︷ ︸

J1(x1)

}

J1(x1) = min
u1

{

(x1 + u1)2 + u21
}

= . . .

Gives

u0 = −35 x0
u1 = −12 x1
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Quadratic optimal cost

It can be shown that the optimal cost on the time interval [t, ∞) is

quadratic:

min
u[t,∞)

∫ ∞

t





x(τ )
u(τ )





T

Q





x(τ )
u(τ )



 dτ = xT(t)Sx(t)

when

ẋ(t) = Ax(t) + Bu(t)
and

Q =




Q1 Q12
QT12 Q2



 > 0
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Dynamic programming, Richard E. Bellman, 1957

t t+ ǫ T

An optimal trajectory on the time in-

terval [t, T ] must be optimal also on

each of the subintervals [t, t + ǫ] and

[t+ ǫ, T ].
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Dynamic programming in linear-quadratic control

Let xt = x(t), ut = u(t). For a time step of length ǫ,

x(t+ ǫ) = xt + (Axt + But)ǫ as ǫ→ 0

xTt Sxt = min
u[t,∞)

∫ ∞

t




x(τ )
u(τ )





T

Q




x(τ )
u(τ )



 dτ

= min
u[t,∞)

{


xt
ut





T

Q




xt
ut



 ǫ+
∫ ∞

t+ǫ




x(τ )
u(τ )





T

Q




x(τ )
u(τ )



 dτ

}

= min
ut

{
(
xTt Q1xt + 2xTt Q12ut + uTt Q2ut

)
ǫ

+
[

xt + (Axt + But)ǫ
]T

S
[

xt + (Axt + But)ǫ
]}

by definition of S. Neglecting ǫ
2 gives Bellman’s equation:

0 = min
ut

{(

xTt Q1xt + 2xTt Q12ut + uTt Q2ut
)

+ 2xTt S
(
Axt + But

)}
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Lecture 9 – Outline

1 Dynamic programming

2 The Riccati equation

3 Optimal state feedback

4 Stability and robustness
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Completion of squares

Suppose Qu > 0. Then

xTQxx + 2xTQxuu+ uTQuu
= (u+ Q−1u QTxux)TQu(u+ Q−1u QTxux) + xT(Qx − QxuQ−1u QTxu)x

is minimized by

u = −Q−1u QTxux
The minimum is

xT(Qx − QxuQ−1u QTxu)x
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The Riccati equation

Completion of squares in Bellman’s equation gives

0 = min
ut

{(

xTt Q1xt + 2xTt Q12ut + uTt Q2ut
)

+ 2xTt S
(
Axt + But

)}

= min
ut

{

xTt [Q1 + ATS+ SA]xt + 2xTt [Q12 + SB]ut + uTt Q2ut
}

= xTt
(

Q1 + ATS+ SA− (SB + Q12)Q−12 (SB + Q12)T
)

xt

with minimum attained for

ut = −Q−12 (SB + Q12)T xt

The equation

0 = Q1 + ATS+ SA− (SB + Q12)Q−12 (SB + Q12)T

is called the algebraic Riccati equation
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Jocopo Francesco Riccati, 1676–1754
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Solving algebraic Riccati equations in Matlab

care Solve continuous-time algebraic Riccati equations.

[X,L,G] = care(A,B,Q,R,S,E) computes the unique stabilizing

solution X of the continuous-time algebraic Riccati equation

-1

A’XE + E’XA - (E’XB + S)R (B’XE + S’) + Q = 0 .

When omitted, R, S and E are set to the default values R=I,

S=0, and E=I. Beside the solution X, care also returns the

gain matrix

-1

G = R (B’XE + S’)

and the vector L of closed-loop eigenvalues (i.e.,

EIG(A-B*G,E)).
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Lecture 9 – Outline

1 Dynamic programming

2 The Riccati equation

3 Optimal state feedback

4 Stability and robustness
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Linear-quadratic optimal control

Control problem:

Minimize

∫ ∞

0

(

xT(t)Q1x(t) + 2xT(t)Q12u(t) + uT(t)Q2u(t)
)

dt

subject to ẋ(t) = Ax(t) + Bu(t), x(0) = x0

Solution: Assume (A, B) controllable. Then there is a unique S > 0
solving the algebraic Riccati equation

0 = Q1 + ATS+ SA− (SB + Q12)Q−12 (SB + Q12)T

The optimal control law is u = −Lx with L = Q−12 (SB + Q12)T .

The minimal cost is xT0 Sx0.

Automatic Control LTH, 2016 FRTN10 Multivariable Control, Lecture 9



Remarks

Note that the optimal control law does not depend on x0.

The optimal feedback gain L is static since we are solving an

infinite-horizon problem.

(LQ theory can also be applied to finite-horizon problems and problems with

time-varying system matrices. We then obtain a Riccati differential equation

for S(t) and a time-varying state feedback, u(t) = −L(t)x(t))
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Example: Control of an integrator

For ẋ(t) = u(t), x(0) = x0,

Minimize J =
∫ ∞

0

{

x(t)2 + ρu(t)2
}

dt

Riccati equation 0 = 1− S2/ρ [ S = √ρ

Controller L = S/ρ = 1/√ρ [ u = −x/√ρ

Closed loop system ẋ = −x/√ρ [ x = x0e−t/
√

ρ

Optimal cost J∗ = xT0 Sx0 = x20
√

ρ

What values of ρ give the fastest response? Why?

What values of ρ give smallest optimal cost? Why?

Automatic Control LTH, 2016 FRTN10 Multivariable Control, Lecture 9



Stochastic interpretation of LQ control

Plant

Controller

✛ ✛

✛

✲

u

z = Q1/2
(
x

u

)

white noise v

state measurement x

Minimize J = E
{

xTQ1x + 2xTQ12u+ uTQ2u
}

subject to ẋ(t) = Ax(t) + Bu(t) + v(t)

where v is white noise with intensity R. Same Riccati solution S as in

the deterministic case. The optimal cost is

J∗ = tr SR
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Lecture 9 – Outline

1 Dynamic programming

2 The Riccati equation

3 Optimal state feedback

4 Stability and robustness
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Theorem: Stability of the closed-loop system

Assume that

Q =




Q1 Q12
QT12 Q2



 > 0

and that there exists a solution S > 0 to the algebraic Riccati

equation. Then the optimal controller u(t) = −Lx(t) gives an

asymptotically stable closed-loop system ẋ(t) = (A− BL)x(t).
Proof:

d

dt
xT(t)Sx(t) = 2xTSẋ = 2xTS(Ax + Bu)

= −
(

xTQ1x + 2xTQ12u+ uTQ2u
)

< 0 for x(t) ,= 0

Hence xT(t)Sx(t) is decreasing and tends to zero as t→∞.
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Solving the LQ problem in Matlab

lqr Linear-quadratic regulator design for state space systems

[K,S,E] = lqr(SYS,Q,R,N) calculates the optimal gain matrix K

such that:

* For a continuous-time state-space model SYS, the state-

feedback law u = -Kx minimizes the cost function

J = Integral {x’Qx + u’Ru + 2*x’Nu} dt

subject to the system dynamics dx/dt = Ax + Bu

The matrix N is set to zero when omitted. Also returned are

the solution S of the associated algebraic Riccati equation

and the closed-loop eigenvalues E = EIG(A-B*K).
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Example – Double integrator

A =




0 1

0 0



 B =




0

1



 Q1 =




1 0

0 0



 Q2 = ρ x(0) =




1

0





States and inputs (dotted) for ρ = 0.01, ρ = 0.1, ρ = 1, ρ = 10
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Closed loop poles:

s = 2−1/2ρ−1/4(−1± i)
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Robustness of optimal state feedback

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
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0
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3

4

Nyquist Diagram
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x
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The distance from the loop gain L(iω I − A)−1B to −1 is never

smaller than 1. This is always true(!) for linear-quadratic optimal state

feedback when Q1 > 0, Q12 = 0 and Q2 = ρ > 0 is scalar. Hence

the phase margin is at least 60○ and the gain margin is infinite!
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Proof of robustness

Using the Riccati equation

0 = Q1 + ATS+ SA− LTQ2L, L = Q−12 (SB + Q12)T

it is straightforward to verify (see [G&L Lemma 5.2]) that

[
I + L(iω − A)−1B

]
∗
Q2

[
I + L(iω − A)−1B

]
=

[(iω − A)−1B
I

]∗ [
Q1 Q12
Q∗
12

Q2

][(iω − A)−1B
I

]

In particular, with Q1 > 0, Q12 = 0, Q2 = ρ > 0
[
1+ L(iω − A)−1B

]
∗

ρ
[
1+ L(iω − A)−1B

]
= BT [(iω − A)−1]∗Q1(iω − A)−1B + ρ

≥ ρ

Dividing by ρ gives

p1+ L(iω − A)−1Bp2 ≥ 1
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Next lecture: Linear-quadratic-Gaussian control

Plant

Controller

✛ ✛

✛

✲

control inputs u

controlled variables z

measurements y

distubances w

For a linear plant, minimize a quadratic function of the map from

disturbances w to controlled variables z
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