
FRTN10 Multivariable Control, Lecture 8

Automatic Control LTH, 2016

Course Outline

L1-L5 Specifications, models and loop-shaping by hand

L6-L8 Limitations on achievable performance

6. Controllability, observability, multivariable zeros

7. Fundamental limitations

8. Multivariable and decentralized control

L9-L11 Controller optimization: Analytic approach

L12-L14 Controller optimization: Numerical approach

Lecture 8 – Outline

1. Transfer functions for MIMO systems

2. Limitations due to RHP zeros

3. Decentralized control

4. Decoupling

See “Lecture notes” and [G&L, Chapters 1, 7.7 (first part) and 8.3]

Lecture 8 – Outline

Transfer functions for MIMO systems

Limitations due to RHP zeros

Decentralized control

Decoupling

Typical process control system Example system: Distillation column

Raw oil inserted at bottom → different petro-chemical subcomponents

extracted

Example system: Distillation column

Linear model:

[
Y1(s)
Y2(s)

]
=




4
50s + 1e−27s 1.8

60s + 1e−28s 5.9
50s + 1e−27s

5.4
50s + 1e−18s 5.7

60s + 1e−14s 6.9
40s + 1e−15s




︸ ︷︷ ︸
P (s)




U1(s)
U2(s)
U3(s)




Outputs: Inputs:

y1 = top draw composition u1 = top draw flowrate

y2 = side draw composition u2 = side draw flowrate

u3 = bottom temperature control input

Multivariable transfer functions

C P

−I

ΣΣΣ
r e u v

d

z

n

y

P and C are matrices – order matters!

Z(s) = PC · R(s) + P · D(s) − PC · [N(s) + Z(s)]
[I + PC]Z(s) = PC · R(s) + P · D(s) − PC · N(s)

Z(s) = [I + PC]−1 · (PC · R(s) + P · D(s) − PC · N(s))

Notice that [I + PC]−1 is generally not the same as [I + CP ]−1.
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Sensitivity functions for MIMO systems

Output sensitivity function

S = (I + PC)−1

Input sensitivity function

(I + CP )−1

Complementary sensitivity function

T = (I + PC)−1PC

G?→?

G?→?

G?→?

Mini-problem:

Find the transfer functions above in the block diagram on the

previous slide.

Some useful math relations

Notice the following identities:

(i) [I + PC]−1P = P [I + CP ]−1

(ii) C[I + PC]−1 = [I + CP ]−1C

(iii) T = P [I + CP ]−1C = PC[I + PC]−1 = [I + PC]−1PC

(iv) S + T = I

Proof:

The first equality follows by multiplication on both sides with (I + PC) from

the left and with (I + CP ) from the right.

Left: [I + PC][I + PC]−1P [I + CP ] = I · [P + PCP ] = [I + PC]P
Right: [I + PC]P [I + CP ]−1[I + CP ] = [I + PC]P · I = [I + PC]P
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Hard limitations from RHP zeros

[G&L Theorem 7.9]

Assume that the MIMO system P (s) has a transfer zero zi in the RHP.

Let S(s) = [I + P (s)C(s)]−1 be the sensitivity function and let

WS(s) be a scalar, stable and minimum phase transfer function. Then

the specification

‖WSS‖∞ = sup
ω

σ̄
(
WS(iω)S(iω)

) ≤ 1

cannot be fulfilled unless

|WS(zi)| ≤ 1

Example

Assume the specification WS(s) = s+a
2s

|WS(zi)| = zi + a

2zi
≤ 1 ⇒ a ≤ zi

10
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a

Non-minimum-phase MIMO system

Example [G&L, Ch 1]

Consider a feedback system Y (s) = (I + PC)−1PCR(s) with the

multivariable process

P (s) =
[

2
s+1

3
s+2

1
s+1

1
s+1

]

Computing the determinant

det P (s) = 2
(s + 1)2 − 3

(s + 2)(s + 1) = −s + 1
(s + 1)2(s + 2)

shows that the process has a RHP zero at s = 1, which will limit the

achievable performance.

See lecture notes for details of the following slides (checking three

different controllers)

Example – Controller 1

The controller

C1(s) =




K1(s+1)
s −3K2(s+0.5)

s(s+2)
−K1(s+1)

s
2K2(s+0.5)

s(s+1)




gives the diagonal loop transfer matrix

P (s)C1(s) =




K1(−s+1)
s(s+2) 0

0 K2(s+0.5)(−s+1)
s(s+1)(s+2)




Hence the system is decoupled into to scalar loops, each with an

unstable zero at s = 1 that limits the bandwidth.

The closed-loop step responses for K1 = K2 = 1 are shown on next

slide.

Step responses using Controller 1
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Closed-loop step responses with decoupling controller C1(s) for the two

outputs y1 (solid) and y2 (dashed). The upper plot is for a reference step for

y1. The lower plot is for a reference step for y2.
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Sensitivity sigma plot using Controller 1
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WS(s) = s+1.001
2s , impossible to meet

Example – Controller 2

The controller

C2(s) =
[

K1(s+1)
s K2

−K1(s+1)
s K2

]

gives the triangular loop transfer matrix

P (s)C2(s) =
[

K1(−s+1)
s(s+2)

K2(5s+7)
(s+2)(s+1)

0 2K2
s+1

]

Now the decoupling is only partial:

Output y2 is not affected by r1. Moreover, there is no unstable zero

that limits the rate of response in y2!

The closed loop step responses for K1 = 1, K2 = 10 are shown on

next slide.

Step responses using Controller 2
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Closed-loop step responses with controller C2(s) for the two outputs y1
(solid) and y2 (dashed). The RHP zero does not prevent a fast y2-response

to r2 but at the price of a simultaneous undesired response in y1.

Sensitivity sigma plot using Controller 2
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Example – Controller 3

The controller

C3(s) =


K1

−3K2(s+0.5)
s(s+2)

K1
2K2(s+0.5)

s(s+1)




gives the triangular loop transfer matrix

P (s)C3(s) =




K1(5s+7)
(s+1)(s+2) 0

2K1
s+1

K2(−1+s)(s+0.5)
s(s+1)2(s+2)




In this case y1 is decoupled from r2 and can respond arbitrarily fast for

high values of K1, at the expense of bad behavior in y2. Step

responses for K1 = 10, K2 = 1 are shown on next slide.

Step responses using Controller 3
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Closed-loop step responses with controller C3(s) for the two outputs y1
(solid) and y2 (dashed). The RHP zero does not prevent a fast y1-response

to r1 but at the price of a simultaneous undesired response in y2.

Sensitivity sigma plot using Controller 3
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Example – summary

To summarize, the example shows that even though a multivariable

RHP zero always gives a performance limitation, it is possible to

influence where the effects should show up.

3



Lecture 8 – Outline

Transfer functions for MIMO systems

Limitations due to RHP zeros

Decentralized control

Decoupling

Decentralized control

Background in process control:

◮ A few important variables were controlled using the simple loop

paradigm: one sensor, one actuator, one controller

◮ As more loops were added, interaction was handled using

feedforward, cascade and midrange control, selectors, etc.

◮ Not obvious how to associate sensors and actuators – the pairing

problem

◮ Computer control and the state feedback paradigm eventually led

to centralized MIMO control

Interaction between simple loops

ysp1

ysp2

u1

u2

y1

y2

C1

C2

Process

Y1(s) = P11(s)U1(s) + P12U2(s)
Y2(s) = P21(s)U1(s) + P22U2(s),

What happens when the controllers are tuned individually?

Rosenbrock’s example

P (s) =




1
s + 1

2
s + 3

1
s + 1

1
s + 1




Very benign subsystems (compare with example in [G&L, Ch.1]).

The transmission zeros are given by the roots of

det P (s) = 1
s + 1

( 1
s + 1 − 2

s + 3
)

= 1 − s

(s + 1)2(s + 3)

Difficult to control the system with a crossover frequency larger than

ωc ≈ 0.5.

Rosenbrock’s example with two SISO controllers

Controller C1 is a PI controller with gains k1 = 1, ki = 1, and C2 is a

P controller with gains k2 = 0, 0.8, or 1.6.
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The second controller has a major impact on the first loop!

Bristol’s relative gain array (RGA)

◮ A simple way of measuring interaction based on static properties

◮ Edgar H. Bristol, "On a new measure of interaction for

multivariable process control", [IEEE TAC 11(1967) pp. 133–135]

◮ Idea: What is effect of control of one loop on the steady state

gain of another loop?

RGA for 2 × 2 system

Consider the first loop u1 → y1 when the second loop is in perfect

control (y2 = 0)

Y1(s) = P11(s)U1(s) + P12U2(s)
0 = P21(s)U1(s) + P22U2(s).

Eliminating U2(s) from the first equation gives

Y1(s) = P11(s)P22(s) − P12(s)P21(s)
P22(s) U1(s).

The ratio of the static gains of loop 1 when the second loop is open

and closed is

λ = P11(0)P22(0)
P11(0)P22(0) − P12(0)P21(0) = 1

1 − P12(0)P21(0)
P11(0)P22(0)

Interpretation of RGA for 2 × 2 systems

λ = 1: No interaction

λ = 0: Open-loop gain u1 → y1 is zero. Avoid this.

0 < λ < 1: Closed loop gain u1 → y1 is larger than open loop

gain.

λ > 1: Closed loop gain u1 → y1 is smaller than open loop gain.

Interaction increases with increasing λ. Very difficult to control

both loops independently if λ is very large.

λ < 0: The closed loop gain u1 → y1 has different sign than the

open loop gain. Opening or closing the second loop has dramatic

effects. The loops are counteracting each other. Such pairings

should be avoided for decentralized control and the loops should

be controlled jointly as a multivariable system.
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RGA for square systems

Let P (s) be an n × n transfer matrix. The relative gain array of P (0) is

Λ = P (0) .∗
(
P −1(0)

)T

The product .∗ is “element-by-element product” (Schur or Hadamard

product, same notation in Matlab). Properties:

◮ P diagonal or triangular gives Λ = I

◮ Not affected by diagonal scalings

Insight and use

◮ Tells how the static gain in one loop is influenced by perfect

control in all other loops

◮ Dimension free. Row and column sums are 1.

◮ Elements close to 1 are good candidates for input–output pairing

◮ Negative elements correspond to sign reversals due to feedback

of other loops – avoid!

RGA for general systems

The RGA can be computed for a general transfer matrix G at some

frequency ω:

RGA(G(iω)) = G(iω) .∗
(
G†(iω)

)T

† denotes the pseudo-inverse (Matlab: pinv)

Often, ω = 0 and ω = ωc are investigated

Another interpretation of RGA




y1
...

ym


 = P




u1
...

um







u1
...

um


 = P −1




y1
...

ym




◮ Pkj gives the map uj → yk when ui = 0 for i 6= j

◮ [P −1]jk gives the map yk → uj when yi = 0 for i 6= k

If [RGA(P )]k,j = 1, then only yk is needed to recover uj . This

means strong coupling and uj is a natural input for control of yk.

Pairing

When designing complex systems loop by loop we must decide what

measurements should be used as inputs for each controller. This is

called the pairing problem. The choice can be governed by physics

but the relative gain array can also be used

Consider Rosenbrock’s example

P (0) =



1 2
1 1


 , P −1(0) =




−1 2
1 −1




Λ = P (0) .∗(P −1(0))T =



−1 2
2 −1


 ,

◮ Negative sign indicates the sign reversal found previously

◮ Better to use reverse pairing, i.e. let u2 control y1

Rosenbrock’s example with reverse pairing
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◮ U2 =
(
1 + 1

s

)
(Yref1 − Y1)

◮ u1 = −k2y2 with k2 = 0, 0.8, and 1.6.

Interactions can be beneficial

P (s) =



P11(s) P12(s)
P21(s) P22(s)


 =




s − 1
(s + 1)(s + 2)

s

(s + 1)(s + 2)
−6

(s + 1)(s + 2)
s − 2

(s + 1)(s + 2)




.

RGA:

Λ =



1 0
0 1


 ,

Transmission zeros

det P (s) = (s − 1)(s − 2) + 6s

(s + 1)2(s + 2)2 = s2 + 4s + 2
(s + 1)2(s + 2)2

Difficult to control individual loops fast because of the zero at s = 1.

Since there are no multivariable zeros in the RHP the multivariable

system can easily be controlled fast (but this system is not robust to

loop breaks)

Lab 2: The quadruple tank

u1 u2

y1 y2

y3 y4

γ1

1 − γ1

γ2

1 − γ2

Tank 1

(A2)

Tank 2

(B2)

Tank 3

(A1)

Tank 4

(B1)

Pump 1 (BP) Pump 2 (AP)
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Decoupling

Simple idea: Find a compensator so that the system appears to be

without coupling ("block-diagonal transfer function matrix").

Many versions:

◮ Input decoupling: Q = PD1
◮ Output decoupling: Q = D2P
◮ Both: Q = D2PD1

D1 and D2 can be static or dynamic systems

Decoupling

yuv

w

PC D1

D2

Find D1 and D2 so that the controller sees a diagonal plant:

D2PD1 =




∗ 0 0
0 ∗ 0
0 0 ∗




Then we can use a decentralized controller C with same

block-diagonal structure.

Example: Input decoupling of 2 × 2 system

D1(s) =
[

1 −P12
P11

−P21
P22

1

]

m1

m2

u1

u2

y1

y2

Σ Σ

ΣΣ1

1C1

C2

P11

P12

P21

P22

− P21
P22

− P12
P11
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