

Sensitivity functions for MIMO systems Some useful math relations Notice the following identities: Output sensitivity function $G_{? \rightarrow ?}$ (i) $[I + PC]^{-1}P = P[I + CP]^{-1}$ $S = (I + PC)^{-1}$ (*ii*) $C[I + PC]^{-1} = [I + CP]^{-1}C$ Input sensitivity function $G_{? \rightarrow ?}$ $(I + CP)^{-1}$ (*iii*) $T = P[I + CP]^{-1}C = PC[I + PC]^{-1} = [I + PC]^{-1}PC$ (iv) S + T = IComplementary sensitivity function $G_{? \rightarrow ?}$ $T = (I + PC)^{-1}PC$ Proof: The first equality follows by multiplication on both sides with (I + PC) from Mini-problem: the left and with (I + CP) from the right. Find the transfer functions above in the block diagram on the Left: $[I + PC][I + PC]^{-1}P[I + CP] = I \cdot [P + PCP] = [I + PC]P$ previous slide. Right: $[I + PC]P[I + CP]^{-1}[I + CP] = [I + PC]P \cdot I = [I + PC]P$ Lecture 8 – Outline Hard limitations from RHP zeros [G&L Theorem 7.9] Assume that the MIMO system P(s) has a transfer zero z_i in the RHP. Let $S(s) = [I + P(s)C(s)]^{-1}$ be the sensitivity function and let Limitations due to RHP zeros $W_S(s)$ be a scalar, stable and minimum phase transfer function. Then the specification $\|W_S S\|_{\infty} = \sup_{\omega} \bar{\sigma} \left(W_S(i\omega) S(i\omega) \right) \le 1$ cannot be fulfilled unless $|W_S(z_i)| \le 1$ Example Non-minimum-phase MIMO system Example [G&L, Ch 1] Assume the specification $W_S(s) = \frac{s+a}{2s}$ Consider a feedback system $Y(s) = (I + PC)^{-1}PCR(s)$ with the multivariable process $|W_S(z_i)| = \frac{z_i + a}{2z_i} \le 1 \quad \Rightarrow \quad a \le z_i$ $P(s) = \begin{bmatrix} \frac{2}{s+1} & \frac{3}{s+2} \\ \frac{1}{s+1} & \frac{1}{s+1} \end{bmatrix}$ Computing the determinant 100 $\det P(s) = \frac{2}{(s+1)^2} - \frac{3}{(s+2)(s+1)} = \frac{-s+1}{(s+1)^2(s+2)}$ 10 shows that the process has a RHP zero at s=1, which will limit the achievable performance. 10 aSee lecture notes for details of the following slides (checking three different controllers) **Example – Controller 1** Step responses using Controller 1 The controller $C_1(s) = \begin{bmatrix} \frac{K_1(s+1)}{s} & -\frac{3K_2(s+0.5)}{s(s+2)} \\ -\frac{K_1(s+1)}{s} & \frac{2K_2(s+0.5)}{s(s+1)} \end{bmatrix}$ 5 Time (sec) gives the diagonal loop transfer matrix $P(s)C_1(s) = \begin{bmatrix} \frac{K_1(-s+1)}{s(s+2)} & 0\\ 0 & \frac{K_2(s+0.5)(-s+1)}{s(s+1)(s+2)} \end{bmatrix}$ Step Re

Hence the system is decoupled into to scalar loops, each with an unstable zero at s = 1 that limits the bandwidth.

The closed-loop step responses for $K_1 = K_2 = 1$ are shown on next slide.

Closed-loop step responses with decoupling controller $C_1(s)$ for the two outputs y_1 (solid) and y_2 (dashed). The upper plot is for a reference step for y_1 . The lower plot is for a reference step for y_2 .

2

 $S(z) = \frac{2s}{2s}$, ..., z = 1

Step responses using Controller 2

Closed-loop step responses with controller $C_2(s)$ for the two outputs y_1 (solid) and y_2 (dashed). The RHP zero does not prevent a fast y_2 -response to r_2 but at the price of a simultaneous undesired response in y_1 .

Example – Controller 3

The controller

$$C_3(s) = \begin{bmatrix} K_1 & \frac{-3K_2(s+0.5)}{s(s+2)} \\ K_1 & \frac{2K_2(s+0.5)}{s(s+1)} \end{bmatrix}$$

gives the triangular loop transfer matrix

$$P(s)C_3(s) = \begin{bmatrix} \frac{K_1(5s+7)}{(s+1)(s+2)} & 0\\ \frac{2K_1}{s+1} & \frac{K_2(-1+s)(s+0.5)}{s(s+1)^2(s+2)} \end{bmatrix}$$

In this case y_1 is decoupled from r_2 and can respond arbitrarily fast for high values of K_1 , at the expense of bad behavior in y_2 . Step responses for $K_1 = 10$, $K_2 = 1$ are shown on next slide.

Example – Controller 2

The controller

$$C_2(s) = \begin{bmatrix} \frac{K_1(s+1)}{s} & K_2 \\ -\frac{K_1(s+1)}{s} & K_2 \end{bmatrix}$$

gives the triangular loop transfer matrix

$$P(s)C_2(s) = \begin{bmatrix} \frac{K_1(-s+1)}{s(s+2)} & \frac{K_2(5s+7)}{(s+2)(s+1)} \\ 0 & \frac{2K_2}{s+1} \end{bmatrix}$$

Now the decoupling is only partial:

Output y_2 is not affected by r_1 . Moreover, there is no unstable zero that limits the rate of response in $y_2!$

The closed loop step responses for $K_1=1,\,K_2=10$ are shown on next slide.

Sensitivity sigma plot using Controller 2

Step responses using Controller 3

Closed-loop step responses with controller $C_3(s)$ for the two outputs y_1 (solid) and y_2 (dashed). The RHP zero does not prevent a fast y_1 -response to r_1 but at the price of a simultaneous undesired response in y_2 .

Example – summary

To summarize, the example shows that even though a **multivariable RHP zero always gives a performance limitation**, it is **possible to influence** where the effects should show up.

RGA for square systems

Let P(s) be an $n \times n$ transfer matrix. The relative gain array of P(0) is

$$\Lambda = P(0) \cdot * \left(P^{-1}(0) \right)^T$$

The product .* is "element-by-element product" (Schur or Hadamard product, same notation in Matlab). Properties:

- $\blacktriangleright~P$ diagonal or triangular gives $\Lambda=I$
- Not affected by diagonal scalings

Insight and use

- Tells how the static gain in one loop is influenced by perfect control in all other loops
- Dimension free. Row and column sums are 1.
- Elements close to 1 are good candidates for input-output pairing
- Negative elements correspond to sign reversals due to feedback of other loops – avoid!

Another interpretation of RGA

$$\begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} = P \begin{bmatrix} u_1 \\ \vdots \\ u_m \end{bmatrix} \qquad \begin{bmatrix} u_1 \\ \vdots \\ u_m \end{bmatrix} = P^{-1} \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$$

- P_{kj} gives the map $u_j \rightarrow y_k$ when $u_i = 0$ for $i \neq j$
- $[P^{-1}]_{jk}$ gives the map $y_k \rightarrow u_j$ when $y_i = 0$ for $i \neq k$

If $[RGA(P)]_{k,j} = 1$, then only y_k is needed to recover u_j . This means strong coupling and u_j is a natural input for control of y_k .

Rosenbrock's example with reverse pairing

- ► $U_2 = \left(1 + \frac{1}{s}\right)(Y_{\text{ref1}} Y_1)$ ► $u_1 = -k_2y_2$ with $k_2 = 0$, 0.8, and 1.6.
 - $n_1 = n_2 g_2 \cdots n_n n_2 = 0, \text{ ord}, \text{ and } \dots$

Lab 2: The quadruple tank

RGA for general systems

The RGA can be computed for a general transfer matrix G at some frequency ω :

$$\operatorname{RGA}(G(i\omega)) = G(i\omega) \cdot * \left(G^{\dagger}(i\omega)\right)^{T}$$

† denotes the pseudo-inverse (Matlab: pinv)

Often, $\omega=0$ and $\omega=\omega_c$ are investigated

Pairing

When designing complex systems loop by loop we must decide what measurements should be used as inputs for each controller. This is called the **pairing** problem. The choice can be governed by physics but the relative gain array can also be used

Consider Rosenbrock's example

$$P(0) = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}, \quad P^{-1}(0) = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$$
$$\Lambda = P(0) \cdot (P^{-1}(0))^T = \begin{pmatrix} -1 & 2 \\ 2 & -1 \end{pmatrix},$$

- Negative sign indicates the sign reversal found previously
- Better to use reverse pairing, i.e. let u₂ control y₁

Interactions can be beneficial

$$P(s) = \begin{pmatrix} P_{11}(s) & P_{12}(s) \\ P_{21}(s) & P_{22}(s) \end{pmatrix} = \begin{pmatrix} \frac{s-1}{(s+1)(s+2)} & \frac{s}{(s+1)(s+2)} \\ \frac{-6}{(s+1)(s+2)} & \frac{s-2}{(s+1)(s+2)} \end{pmatrix}$$

 $\Lambda = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$

RGA:

Transmission zeros

$$\det P(s) = \frac{(s-1)(s-2) + 6s}{(s+1)^2(s+2)^2} = \frac{s^2 + 4s + 2}{(s+1)^2(s+2)^2}$$

Difficult to control individual loops fast because of the zero at s = 1. Since there are no multivariable zeros in the RHP the multivariable system can easily be controlled fast (but this system is not robust to loop breaks)

Lecture 8 – Outline

Transfer functions for MIMO systems

Limitations due to RHP zeros

Decentralized contro

Decoupling

Decoupling

Decoupling

Simple idea: Find a compensator so that the system appears to be without coupling ("block-diagonal transfer function matrix").

Many versions:

- Input decoupling: Q = PD₁
 Output decoupling: Q = D₂P
 Both: Q = D₂PD₁

 ${\cal D}_1$ and ${\cal D}_2$ can be static or dynamic systems

Find $D_1 \ {\rm and} \ D_2$ so that the controller sees a diagonal plant:

$$D_2 P D_1 = \begin{bmatrix} * & 0 & 0 \\ 0 & * & 0 \\ 0 & 0 & * \end{bmatrix}$$

Then we can use a decentralized controller ${\boldsymbol{C}}$ with same block-diagonal structure.

Example: Input decoupling of 2×2 system

$$D_{1}(s) = \begin{bmatrix} 1 & -\frac{P_{12}}{P_{11}} \\ -\frac{P_{22}}{P_{22}} & 1 \end{bmatrix}$$