FRTN10 Multivariable Control, Lecture 6

Automatic Control LTH, 2016

Course Outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance
6. Controllability/observability, multivariable
poles/zeros, realizations
7. Fundamental limitations
8. Multivariable and decentralized control

L9-L11 Controller optimization: Analytic approach
L12-L14 Controller optimization: Numerical approach

Lecture 6 — Outline

Example: Ball in the Hoop

1. Controllability and observability, gramians
2. Multivariable poles and zeros

3. Minimal state-space realizations

[Glad & Ljung] Ch. 3.2-3.3, beg. of 3.5; Lecture notes on course web page
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Can you reach § = /4, 6 =0? Can you stay there?

Example: Two water tanks
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Remember: Controllability and state feedback

Process
Closed-loop system
&= Az + Bu )
y=Cx i =(A— BL)x + Bl,r
y=Czx
State-feedback control
u=—Lrx+lLr=—[lla..lyJz+1lr
i L u i:Az+Bu—ny$
xr
—L

If the system (A, B) is controllable we can find a state feedback gain vector
L to place the poles of the closed-loop system where we want

Remember: Observability and observers

Process Observer
dzx B i But Ky — g
{th."L‘+Bu dt Az + Bu+ (y—19)
prediction correction
y=0Cz §=Ci
Estimation/observer error & = x — &:
F=i-2
= Az + Bu— A% — Bu— K(Cz — C#%)
=(A-KCO)z

If the system (A, C) is observable we can find an observer gain vector
k1
K= which assigns desired eigenvalues for (A — KC).

kn

Controllability

The system
%(t) = Az(t) + Bu(t)

is controllable , if for every z; € R™ there exists u(t),¢ € [0, 1],
such that z(¢1) = 21 is reached from x(0) = 0.

The collection of vectors x; that can be reached in this way is called
the controllable subspace.

(Matlab: orth(ctrb(A,B)))




Controllability criteria

The following statements regarding a system & (¢) = Az (t) + Bu(t)
of order n are equivalent:

() The system is controllable
(i) rank [A —XI B]=nforall A e C
(iii) rank [B AB... A" 'B] =n

If A is exponentially stable, define the controllability Gramian
°° At T AT
S = / e BBTeM tdt
0
For such systems there is a fourth equivalent statement:

(iv) The controllability Gramian is non-singular

Interpretation of the controllability Gramian

The controllability Gramian measures how difficult it is to reach a
certain state.

In fact, let S = fgl eAtBBT A"t dt. Then, for the system
#(t) = Az(t) + Bu(t) to reach z(t1) = =1 from 2(0) = O itis
necessary that

11
/0 [u(t)Pdt > 2T S ey

Equality is attained with

u(t) = BTeA" (-0g 1y,

(For proof, see the lecture notes.)

Computing the controllability Gramian

The controllability Gramian S = [ e4*BBTeA™dt can be computed
by solving the Lyapunov equation

AS +SAT + BBT =0
(For proof, see the lecture notes.)

Matlab: S = lyap(A,B*B’)

Q: Where have we seen this equation before?

Example: Two water tanks
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Controllability Gramian: S:/ [ ,al] { 7,1[] dt = [ 2 a 1]
L ¢ T+

S close to singular when a = 1. Interpretation?

Example cont’d

Matlab:

>> a=1.25; A= [-10; 0-1*al; B=[1; 1];

>> Cs= [B AxB], rank(Cs)
Cs =
1.0000 -1.0000
1.0000 -1.2500
ans =

2
>> S = lyap(A,B*B’)
S =

0.5000 0.4444
0.4444 0.4000
>> invS = inv(S)
invs =
162.0 -180.0
-180.0 202.5

Plotof [z1 2] -5 |71 =1
T2

corresponds to the states we can reach by
J57 u(®)*dt = 1.

Observability
The system
@(t) = Az(t)
y(t) = Cx(t)

is observabile, if the initial state 2(0) = o € R™ can be uniquely
determined by the output y(t), ¢t € [0,¢1].

The collection of vectors xq that cannot be distinguished from x = 0 is
called the unobservable subspace.

(Matlab: null (obsv(A,C)))

Observability criteria

The following statements regarding a system @(t) = Az (t),
y(t) = Cx(t) of order n are equivalent:

(i) The system is observable
(ii) rank [A - ’\I} =nforall A e C
C
C
CcA
(iii) rank . =n
can

If A is exponentially stable, define the observability Gramian
O ATH AT v At
0:/ AT ety
Jo

For such systems there is a fourth equivalent statement:

(iv) The observability Gramian is non-singular

Interpretation of the observability Gramian

The observability Gramian measures how difficult it is to distinguish
two initial states from each other by observing the output.

Infact, let Oy = [ A"t CTCeAtdt. Then, for i(t) = Ax(t), the
influence from the initial state 2:(0) = xq on the output y(¢) = Cz(t)
satisfies

t1
|| o= a§ 01y




Computing the observability Gramian

The observability Gramian O = [ A" *CT CeA*dt can be computed
by solving the Lyapunov equation

ATo+0A+CTC =0

Matlab: 0 = lyap(A’,C’*C)

Mini-problem

Is the water tank system with a = 1 observable?

What if only y; is available?

Poles and zeros

Y(s) = [C(sI — A" B + D] U(s)
N—_— ——
G(s)
For scalar systems, the points p € C where G(s) = oo are called
poles G. They are eigenvalues of A and determine stability.
The poles of G(s)~! are called zeros of G.

This definition can be used also for square MIMO systems, but we will
next give a more general definition, involving also multiplicity.

Pole and zero polynomials

» The pole polynomial is the least common denominator of all
minors (sub-determinants) to G(s).

» The zero polynomial is the greatest common divisor of the
maximal minors of G(s).
The poles of G are the roots of the pole polynomial.

The (transmission) zeros of GG are the roots of the zero polynomial.

Poles and zeros — example

Calculate the poles and zeros of

2 3
G(S) _ [541»1 s«;?]
s+1

) —(s—1
Poles: Minors: 2, 3=, L. L 2 (s-1)

3 _
S 5420 s+10 s+1° (s+1)2 ~ (s+1)(s+2) — (s+1)2(s+2)

The least common denominator is (s + 1)2(s + 2), giving the poles
—2and —1 (double)

—1)

. : e
Zeros: Maximal minor: TG

The greatest common divisor is s — 1, giving the (transmission) zero 1.

Zeros of square systems

When G(s) is square, the only maximal minor is det G(s), so the
zeros are determined from the equation

det G(s) =0

For a square system with minimal state-space realization, the zeros
are the solutions to

sI—A B
det{,c D}:O

Interpretation of poles and zeros

Poles:

» Apole s = a is associated with a time function z(t) = zge®
» Apole s = ais an eigenvalue of A

Zeros:

» A zero s = a means that an input u(t) = uge® is blocked
» A zero describes how inputs and outputs couple to states

u Y

Example: Ball in the Hoop

input w (

output 6
O4ch+ k=0

The transfer function from w to 0 is m The zero in s = 0 makes
it impossible to control the stationary position of the ball.




Example: Two water tanks
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(s+ 13(? +2)

The system has a zero in the origin! At stationarity y; = y».

Gls) = {E ﬂ det G(s) =
s+2

Plot singular values of GG(iw) vs frequency

» s=tf(’s’)
» G=[1/(s+1) 1; 2/(s+2) 1]
» sigma(G) ; plot singular values

% Alt. for a certain frequency:

» w=1;
» A = freqresp(G,i*w);
» [U,S,V] = svd(A)

Frequency (radisec)

1
The largest singular value of G(iw) = | 51

w2
This is due to the second input. The first input makes it possible to
control the difference between the two tanks, but mainly nearw =1

where the dynamics make a difference.

is fairly constant.

Realization in diagonal form

Consider a transfer matrix with partial fraction expansion

as) = 9B p

=15 " Pi

This has the realization

pil 0 By

(t) = z(t)+ | ¢ | u®)
0 pnI Bn
v =[Gl )+ Du)

The rank of the matrix C; B; determines the necessary number of
columns in B; and the multiplicity of the pole p;.

(Warning: Matlab has no good command for doing this)

Realization of multivariable system — example 1

To find a minimal state-space realization for the system

2 3
G(S) _ [5414 541»2]

s+1  s+1

with poles in —2 and —1 (double), write the transfer matrix as (e.g.)

e o [fo o oy

s+1 s+1 s+ 2

G(s) = [

giving the realization

Realization of multivariable system — example 2

To find state space-realization for the system

1 2
Glo)=| 5t T
(s+2)(s+4) s+2

write the transfer matrix as

S+1 S+1 s+3
- - 1 s+1 stz T a3 T aya

s+2 s+ s+2

G, o] plo o (e o [fo-u (e

This gives the realization

&1 () -1 0 0 07 [=(® 1 1
)] |0 =2 0 0| |a2t) . 3 1 [ul(t)]
L3(t) - 0 0 -3 0 iL';(t) 0 -1 UQ(t)
Fq(t) 0 0 0 -4 |zalt) -3 0

@] [t 010
B;(t)]*[o 10 1] 2(®)




