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Course Outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance

© Controllability/observability, multivariable
poles/zeros, realizations

@ Fundamental limitations

@ Multivariable and decentralized control

L9-L11 Controller optimization: Analytic approach
L12-L14 Controller optimization: Numerical approach
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Lecture 6 — Outline

@ Controllability and observability, gramians
@ Multivariable poles and zeros

© Minimal state-space realizations

[Glad & Ljung] Ch. 3.2-3.3, beg. of 3.5; Lecture notes on course web page
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Example: Ball in the Hoop
input w (

\
|

}K/,\ output 6
0+ ch+ ko=
Can you reach § = /4, 0 =0? Can you stay there?
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Example: Two water tanks

-

Ui \L (5] \L

x2
1
— 1|1
[ ‘i
U9 T U2 azxo a>1
T1 = —1 + U Y1 = T1 + ug

To = —axg + Uy Y2 = ar2 + U2
Canyoureachy; =1,y = 27 Can you stay there?
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Lecture 6 — Outline

@ Controliability and observability
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Remember: Controllability and state feedback

Process
Closed-loop system
¢ = Az + Bu .
=05 = (A—BL)x+ Bl,r
y=Cx
State-feedback control
u=—Lx+1lr=—[la..lp)x+1r
r . I T &= Az + Bu
a5
—L

If the system (A, B) is controllable we can find a state feedback gain vector
L to place the poles of the closed-loop system where we want
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Remember: Observability and observers

Process Observer
dz
dzx — —Ai+Bu+K(y—g
E:Ax—kBu dt i’;_lﬁ‘*‘ (y—9)
prediction correction
y=Cx §=C%
Estimation/observer error = x — :
F=i—2
= Az + Bu— A% — Bu— K(Cz — C%)
=(A-KO)z

If the system (A, C) is observable we can find an observer gain vector
k1

K = | . | which assigns desired eigenvalues for (A — KC).
kn
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Controllability

The system
#(t) = Az(t) + Bu(t)

is controllable , if for every z; € R" there exists u(t),t € [0, 1],
such that z(t1) = x; is reached from z(0) = 0.

The collection of vectors x; that can be reached in this way is called
the controllable subspace.

(Matlab: orth (ctrb(A,B)))
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Controllability criteria

The following statements regarding a system @:(¢) = Ax(t) + Bu(t)
of order n are equivalent:

(i) The system is controllable
(i) rank [A—AX] B]=mnforall A € C
(iii) rank [B AB... A" 'B] =n

If A is exponentially stable, define the controllability Gramian
* AtppT AT
S:/ e"BBT et tdt
0

For such systems there is a fourth equivalent statement:

(iv) The controllability Gramian is non-singular
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Interpretation of the controllability Gramian

The controllability Gramian measures how difficult it is to reach a
certain state.

In fact, let S = [¢! eAtBBTeA tdt. Then, for the system

#(t) = Az(t) + Bu(t) to reach z(t1) = 1 from z(0) = O itis
necessary that

t1
/O lu(t)2dt > 2T S ay

Equality is attained with

T td))
u(t) = BTeA (1 t)Sl Loy
(For proof, see the lecture notes.)
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Computing the controllability Gramian

The controllability Gramian S = [ e4*BBTeA"!d¢ can be computed
by solving the Lyapunov equation

AS +SAT + BBT =0
(For proof, see the lecture notes.)

Matlab: S = lyap(A,B*B?)

Q: Where have we seen this equation before?
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Example: Two water tanks

x2
1
— 1|1
(75 i T (75) \L axry

1= —11+u T2 = —axo + Uy
o T —t et T 1 1
Controllability Gramian: S :/ { _at} { _at] dt = [ i afl}
0 € € a+1 2a

S close to singular when a ~ 1. Interpretation?
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Example cont’d

Matlab:

> a =1.25; A= [-10; 0 -1xa]; B=[1; 1];

>> Cs= [B Ax*B], rank(Cs)
Cs =
1.0000 -1.0000
1.0000 -1.2500
ans =
2
>> S = lyap(A,B*B’)
S =
0.5000 0.4444
0.4444 0.4000
>> invS = inv(S) Plot of [501 292] g1 $1:| -1
invS = x2
162.0 -180.0 corresponds to the states we can reach by
-180.0 202.5 f0°° |u(t)\2dt =1.
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Observability

The system

is observable, if the initial state 2(0) = zp € R" can be uniquely
determined by the output y(t),t € [0, ¢1].

The collection of vectors x( that cannot be distinguished from z = 0 is
called the unobservable subspace.

(Matlab: null (obsv(A,C)))
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Observability criteria

The following statements regarding a system @(t) = Ax(t),
y(t) = Cxz(t) of order n are equivalent:

(i) The system is observable

(i) rank 4 _CM] =nforall A e C
e
CA
(iii) rank i =n
can

If A is exponentially stable, define the observability Gramian
ATt T ~ At
0= / e 'CT Ce™dt
0
For such systems there is a fourth equivalent statement:

(iv) The observability Gramian is non-singular
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Interpretation of the observability Gramian

The observability Gramian measures how difficult it is to distinguish
two initial states from each other by observing the output.

In fact, let Oy = [ eA"tCT CeAldt. Then, for i:(t) = Aux(t), the
influence from the initial state z(0) = xo on the output y(t) = Cz(t)
satisfies

t1
| lwa = afors
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Computing the observability Gramian

The observability Gramian O = [ eA"*CT CeAtdt can be computed
by solving the Lyapunov equation

ATo+0A+CTC =0

Matlab: 0 = lyap(A’,C’*C)
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Mini-problem

Is the water tank system with a = 1 observable?

What if only y; is available?
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Lecture 6 — Outline

Q Multivariable poles and zeros
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Poles and zeros

Y(s) =[C(sI — A)™'B + D] U(s)
G(s)

For scalar systems, the points p € C where G(s) = oo are called
poles GG. They are eigenvalues of A and determine stability.

The poles of G(s)~! are called zeros of G.

This definition can be used also for square MIMO systems, but we will
next give a more general definition, involving also multiplicity.
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Pole and zero polynomials

@ The pole polynomial is the least common denominator of all
minors (sub-determinants) to G(s).

@ The zero polynomial is the greatest common divisor of the
maximal minors of G(s).

The poles of G are the roots of the pole polynomial.

The (transmission) zeros of (G are the roots of the zero polynomial.
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Poles and zeros — example

Calculate the poles and zeros of
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Poles and zeros — example

Calculate the poles and zeros of
2 3
1l s+1 s+2
G(s) = [1 . ]
s+1

. Mi % 3 1 1 2 3 i = (=)
Poles: Minors: s+17 5427 s+1° s+1° (s+1)2  (s+1)(s+2) ~ (s+1)2(s+2)

The least common denominator is (s + 1)2(s + 2), giving the poles
—2 and —1 (double)
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Poles and zeros — example

Calculate the poles and zeros of
2 3
1l s+1 s+2
G(s) = [ 3 . ]
s+1

2 3 1 1 2 3 —(s=1)

Poles: Minors: S+ 5427 s+1° s+1° (s+1)2  (s+D)(s+2)  (5+1)2(s+2)

The least common denominator is (s + 1)2(s + 2), giving the poles
—2 and —1 (double)

Zeros: Maximal minor: %

The greatest common divisor is s — 1, giving the (transmission) zero 1.
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Zeros of square systems

When G(s) is square, the only maximal minor is det G(s), so the
zeros are determined from the equation

det G(s) =0

For a square system with minimal state-space realization, the zeros
are the solutions to

s —A B
detlc D}—O
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Interpretation of poles and zeros

Poles:

@ Apole s = a is associated with a time function z(t) = zpe®

@ Apole s = ais an eigenvalue of A
Zeros:

@ A zero s = a means that an input u(t) = uge® is blocked

@ A zero describes how inputs and outputs couple to states
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Example: Ball in the Hoop

input w (

output 8
04 ch+kb=u

The transfer function from w to 6 is m The zero in s = 0 makes
it impossible to control the stationary position of the ball.
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Example: Two water tanks

- =

ull uljx
)
1
| |
u2 T U9 229
T1 = —T1 + U1 Y1 =21+ us
Ty = —2T9 + Uy Yo = 2T + Us
Go= | Y = ——t
S pry e —
T (s+1)(s+2)

The system has a zero in the origin! At stationarity y; = 2.
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Plot singular values of GG(iw) vs frequency

Singular Values

» s=tf(’s’) 0
» G=[1/(s+1) 1; 2/(s+2) 1]
» sigma(G) ; plot singular values

% Alt. for a certain frequency:

Singuiar Values (abs)

» w=1;
» A = freqresp(G,i*w);
» [U,S,V] = svd(A)

10
Frequency (rad/sec)

~—
The largest singular value of G (iw) = | 4! 1

w2
This is due to the second input. The first input makes it possible to
control the difference between the two tanks, but mainly near w =1

where the dynamics make a difference.

is fairly constant.
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Lecture 6 — Outline

Q Minimal realizations
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Realization in diagonal form

Consider a transfer matrix with partial fraction expansion

" C;B;
G(s = +D
() ; Fics
This has the realization
plf 0 Bl
il = x(t)+ | | u(t)
0 Pl B,
y(t) = [C1 ... Cn]a(t)+ Du(t)

The rank of the matrix C; B; determines the necessary number of
columns in B; and the multiplicity of the pole p;.

(Warning: Matlab has no good command for doing this)
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Realization of multivariable system — example 1

To find a minimal state-space realization for the system

2 3
s+1 s+2
G(s) = [ v 1 ]
s+1  s+1

with poles in —2 and —1 (double), write the transfer matrix as (e.g.)

Ju o oo oo
s+ 1 s+ 1 s+ 2

giving the realization

-1 0 0 1 0
=10 -1 0 ]|lz+ |0 1]|w
0 0 -2 0 1
(2 0 3
Y=11 1 0)"
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Realization of multivariable system — example 2

To find state space-realization for the system

1 2
G(s) = [f= (++1)(+3)
(s4+2)(s+4) s+2

write the transfer matrix as

e oo u [He o oo (e

s+1 s+1 s+3 e L L
$78i4 ?12 s+1 s+ 2 s+ 3 s+4

This gives the realization

jil(t) -1 0 0 0 l‘l(t) 1 1

0| =10 0o =3 o |m®|T]o -1 [UQ(t)]
da(t) 0 0 0 —4| |zt 3 0

@] 1o 10

Bg(t)} _[0 10 1} z(t)
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