# **FRTN10 Multivariable Control, Lecture 5**

**Automatic Control LTH, 2016** 

#### **Course Outline**

- L1-L5 Specifications, models and loop-shaping by hand
  - Introduction
  - Stability and robustness
  - Specifications and disturbance models
  - Control synthesis in frequency domain
  - Case study
- L6-L8 Limitations on achievable performance
- L9-L11 Controller optimization: Analytic approach
- L12-L14 Controller optimization: Numerical approach

#### **Lecture 5 – Outline**

- Case Study: Control of a DVD reader
  - Focus control
  - Radial control
- Review of cascade and midranging control

### Loop shaping

Controller synthesis via loop shaping: Shape the **open loop gain** L=PC so that

- ullet  $[L] > |W_S|$  for low frequencies (disturbance rejection)
- ullet  $|L|<|W_T^{-1}|$  for high frequencies (robustness, att. of meas. noise)
- good stability margins  $(\varphi_m, A_m, M_s)$  are achieved

The controller C is typically composed of several factors

- gain
- lag filters
- lead filters
- other filters (e.g., notch filter

# Loop shaping

Controller synthesis via loop shaping: Shape the **open loop gain** L=PC so that

- ullet  $[L] > |W_S|$  for low frequencies (disturbance rejection)
- ullet  $|L|<|W_T^{-1}|$  for high frequencies (robustness, att. of meas. noise)
- good stability margins  $(\varphi_m, A_m, M_s)$  are achieved

The controller C is typically composed of several factors:

- gain
- lag filters
- lead filters
- other filters (e.g., notch filter)

#### **Lecture 5 – Outline**

- Case study: Control of a DVD reader
- 2 Review of cascade and midranging control

#### Case Study: Control of a DVD reader



- The DVD reader process
- Problem formulation
- Modeling
- Specifications
- Focus control loop shaping
- Radial control (track following)

Based on work by Bo Lincoln



Scaled version of the control task in a DVD player:

- Imagine that you are traveling at half the speed of light,
- The line is not straight but oscillates up to 4.5 km sideways
   25 times per second

Good luck

Scaled version of the control task in a DVD player:

- Imagine that you are traveling at half the speed of light, along a line from which you may only deviate 1 m
- The line is not straight but oscillates up to 4.5 km sideways
   25 times per second

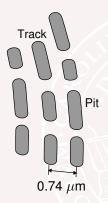
Good luck!

Scaled version of the control task in a DVD player:

- Imagine that you are traveling at half the speed of light, along a line from which you may only deviate 1 m
- The line is not straight but oscillates up to 4.5 km sideways

Good luck

Scaled version of the control task in a DVD player:


- Imagine that you are traveling at half the speed of light, along a line from which you may only deviate 1 m
- The line is not straight but oscillates up to 4.5 km sideways
   25 times per second

Good luck

Scaled version of the control task in a DVD player:

- Imagine that you are traveling at half the speed of light, along a line from which you may only deviate 1 m
- The line is not straight but oscillates up to 4.5 km sideways
   25 times per second

Good luck!



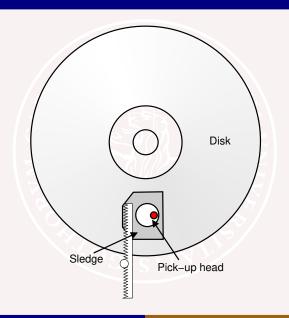
- 3.5 m/s speed along track
- 0.022  $\mu$ m tracking tolerance
- 100  $\mu$ m deviations at 10–25 Hz due to asymmetric discs

DVD Digital Versatile Disc, 4.7–8.5 GB

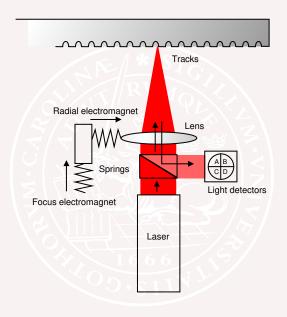
CD Compact Disc, 650-800 MB

Blu-ray 25-400 GB

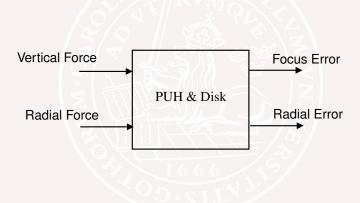
# Can you see the laser spot?



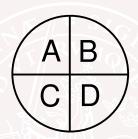

Automatic Control LTH, 2016


FRTN10 Multivariable Control, Lecture 5




# The DVD Pick-Up Head

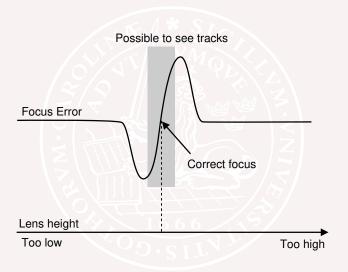




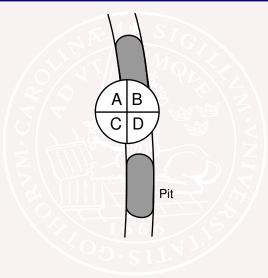



# Input-output diagram for DVD control




### The four photo detectors

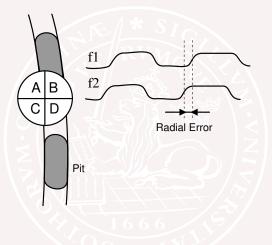



focus error = 
$$(A+D) - (B+C)$$

Note: There are no other sensors in the pick-up head to help keep the laser in the track.

### Focus error signal

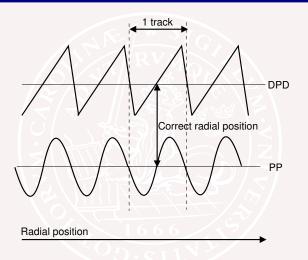



# Radial error by push-pull



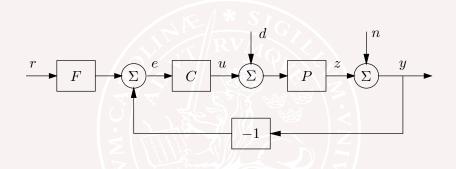
Look at

$$(A+C)-(B+D)$$


### Radial error by phase difference



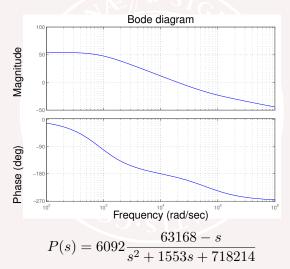
$$f_1 = A + D, \qquad f_2 = B + C$$


Error signal RE created by time difference

# Radial error signals



Note: Larger linear error region if using phase difference.


#### Focus control design



- What blocks and signals are relevant for focus control?
- What disturbances are there?

#### Focus process model

Model obtained using system identification:



# **Specifications**

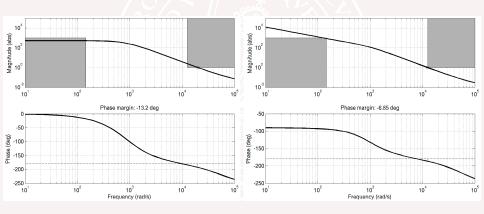
Cancel disturbances due to disc asymmetry

$$|P(i\omega)C(i\omega)| \ge 1000$$

for  $\omega \leq 25~{\rm Hz}$ 

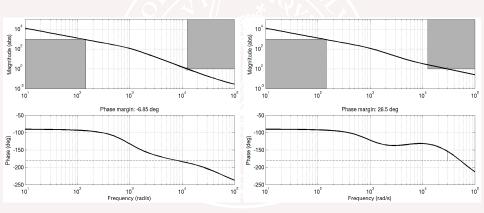
Robustness towards model errors, rejection of meas. noise

$$|P(i\omega)C(i\omega)| \le 1$$


for  $\omega>2~\mathrm{kHz}$ 

(Compare to the bit rate, which is in the order of 1 MHz)

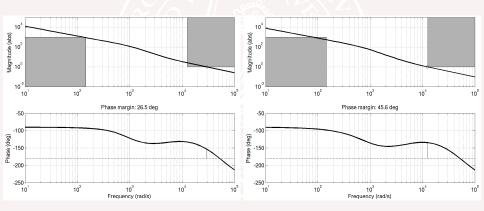



# **Lag Compensator**

Use lag filter to increase the gain below 25 Hz. The break point needs to be well below 2 kHz in order to avoid additional phase lag at the cross-over frequency:  $C_1(s)=0.4\frac{s+600}{s}$ 



#### **Lead and Lag Compensators**


Further compensation is needed for stability. A lead filter to increase the phase near 2 kHz;  $C_2(s)=0.4\frac{s+600}{s}\frac{1+s/5000}{1+s/50000}$ .

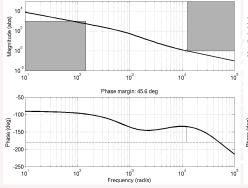


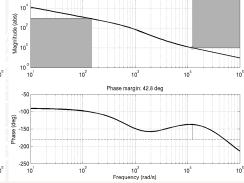
#### Adjust the gain

The gain needs to be adjusted at high frequencies.

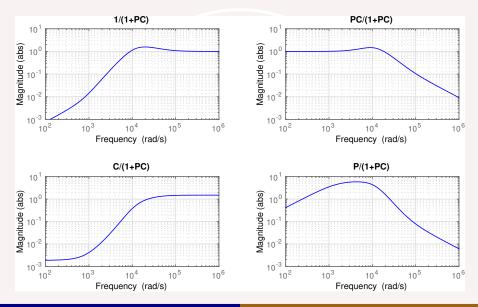
Now the closed loop system is stable with good margins, but the gain at 25 Hz is still too low, just 100 instead of 1000;




#### Final controller


The gain at 25 Hz can be corrected by modifying the break point of the lag filter to get the final controller

$$C(s) = 0.15 \frac{s + 1600}{s} \frac{1 + s/5000}{1 + s/50000}.$$


Notice that this is in fact a PID controller in serial form,

$$C(s) = K' \left(1 + \frac{1}{sT_i'}\right) \frac{1 + sT_d'}{1 + sT_d'/N'}$$



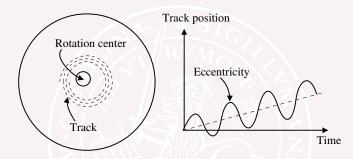


# Gang of Four for the Final Controller



#### Radial control

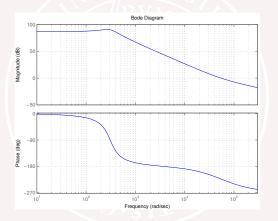
Make the laser follow the track by moving "sideways"/radially


It is essential to solve the Focus control problem first

Tracking via two parallel actuators (midranging):

- Move lens (electromagnet/fast motion)
- Move sledge (slow/large range)

#### Disturbances:


- eccentricity (up to 100 tracks in one rotation)
- physical vibrations of DVD player
- o noise, dirt, etc.



The disc is often a bit eccentric (i.e. not rotating around the track center). The resulting track position, which the Pick-Up-Head has to follow, is sinus-like.

# **Experimental radial dynamics model**

An estimated transfer function for the radial servo (from the control signal u to the radial error RE)



System identification made by sinusoidal excitation.

### **DVD specification (standard ECMA-267)**

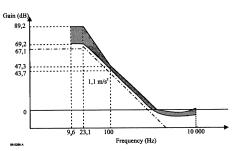



Figure 4 - Reference Servo for Radial Tracking

#### Bandwidth from 100 Hz to 10 kHz

|1 + H| shall be within 20 % of  $|1 + H_S|$ .

The crossover frequency  $f_0 = \omega_0 / 2\pi$  shall be specified by equation (III), where  $\alpha_{\max}$  shall be 1,5 times larger than the expected maximum radial acceleration of 1,1 m/s<sup>2</sup>. The tracking error  $e_{\max}$  shall not exceed 0,022  $\mu$ m. Thus the crossover frequency  $f_0$  shall be

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{3\alpha_{\text{max}}}{\epsilon_{\text{max}}}} = \frac{1}{2\pi} \sqrt{\frac{1,1 \times 1,5 \times 3}{0,022 \times 10^{-6}}} = 2,4 \text{ kHz}$$
 (III)

The figure on the previous slide is a copy from the DVD specification, standard ECMA-267.

The plot shows the specified |1 + PC|, which is the inverse of the sensitivity function, and the curve corresponds roughly to the *open-loop transfer function*.

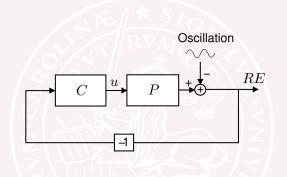
In clear text, the specification requires the following:

- A low-frequency (< 25 Hz) gain of 70 dB or more for the open-loop system.
- A cross-over frequency of  $\omega_c=2.4~\mathrm{kHz}=15~\mathrm{krad/s}.$

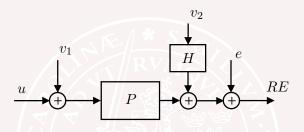
## **Different design choices**

There are a number of different design methods to use

### Example:


- Loop shaping
- Pole placement
- LQG (Lectures 9–11)
- ...

## Problem with output disturbance


The eccentricity causes problems (about 10–25 Hz and oscillation of up to 100 tracks). Can't be exactly modeled due to uncertainty.

How to proceed?

## How to get rid of the oscillation?



A model of how the disk oscillation affects the system. For example, if the oscillation offset at some point in time is +6.2 tracks, the DVD radial servo has to be at +6.2 tracks too to have zero RE.



Noise model: There is both white process noise  $v_1$ , and a track-offset which is modeled as the white noise  $v_2$  through a filter H.

When designing a state estimator, we can give the Kalman filter a "hint" of what to expect, by modeling the eccentricity as white noise through a filter H as shown in the figure above. The filter H should have a high gain in the frequency range where the oscillation acts.

### From lecture 3...

If  $w_1$  and  $w_2$  are colored noise then re-write  $w_1$  and  $w_2$  as output signals from linear systems with white noise inputs  $v_1$  and  $v_2$  .

$$w_1 = G_1(p)v_1, w_2 = G_2(p)v_2$$

Make state-space realizations of  ${\cal G}_1$  and  ${\cal G}_2$  and extend the system description with these states

$$\dot{\overline{x}}(t) = \overline{A}\overline{x}(t) + \overline{B}\overline{u}(t) + \overline{N}v_1(t)$$

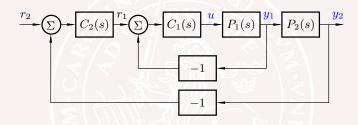
$$z(t) = \overline{M}\overline{x}(t) + D_z u(t)$$

$$y(t) = \overline{C}\overline{x}(t) + D_y u(t) + v_2(t)$$

### References

### See also

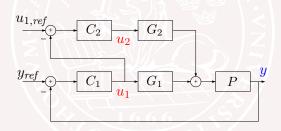
- Lecture notes on course web page
- "Sensing and Control in Optical Drives How to Read Data from a Clear Disc" by Amir H. Chaghajerdi, June 2008, *IEEE Control* Systems Magazine, pp. 23–29,


http://www.ieeecss.org/CSM/library/2008/june08/11-June08ApplicationsOfControl.pdf

### **Lecture 5 – Outline**

- Case study: Control of a DVD readel
- 2 Review of cascade and midranging control

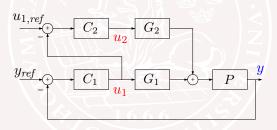
### **Cascade control**


For systems with one control signal and two (or more) outputs:



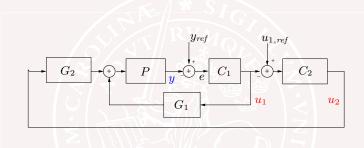
- $C_1(s)$  controls the subsystem  $P_1(s)$ 
  - Fast inner loop,  $G_{y_1r_1}(s)\approx 1$
- ullet  $C_2(s)$  controls the subsystem  $P_2(s)$ 
  - Slow outer loop

## **Midranging Control**


- Midranging is used for processes with two inputs and one output
- Classical application: valve position control
- Fast process input  $u_1$  (Example: fast but small-range valve)
- Slow process input  $u_2$  (Example: slow but but large-range valve)



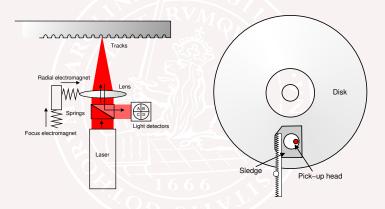
Q: What should  $u_{1,ref}$  be? How does the midranging controller work?


## **Midranging Control**

- Midranging is used for processes with two inputs and one output
- Classical application: valve position control
- Fast process input  $u_1$  (Example: fast but small-range valve)
- Slow process input  $u_2$  (Example: slow but but large-range valve)



Q: What should  $u_{1,ref}$  be? How does the midranging controller work?


## Midranging control – a dual to cascade control



- First tune the fast inner loop, then the slower outer loop
- Controllers have separate time scales to avoid interaction

# Midranging cont'd

Example: Radial control of pick-up-head of DVD player



The pick-up-head has two electromagnets for fast positioning of the lens (left). Larger radial movements are taken care of by the sledge (right).