

Course Outline

L1-L5 Specifications, models and loop-shaping by hand

- 1. Introduction
- 2. Stability and robustness
- 3. Specifications and disturbance models
- 4. Control synthesis in frequency domain
- 5. Case study

L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach

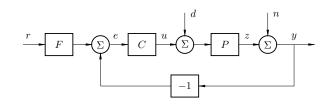
L12-L14 Controller optimization: Numerical approach

Lecture 4 - Outline

- 1. Frequency domain specifications
- 2. Loop shaping
- 3. Feedforward design

[Glad & Ljung] Ch. 6.4-6.6, 8.1-8.2

Relations between signals



$$\begin{split} Z &= \frac{P}{1+PC}D - \frac{PC}{1+PC}N + \frac{PCF}{1+PC}R \\ Y &= \frac{P}{1+PC}D + \frac{1}{1+PC}N + \frac{PCF}{1+PC}R \\ U &= -\frac{PC}{1+PC}D - \frac{C}{1+PC}N + \frac{CF}{1+PC}R \end{split}$$

Design specifications

Find a controller that

- A: reduces the effect of load disturbances
- B: does not inject too much measurement noise into the system
- C: makes the closed loop insensitive to process variations
- D: makes the output follow the setpoint

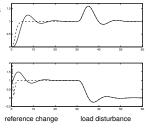
If possible, use a controller with **two degrees of freedom**, i.e. separate signal transmission from y to u and from r to u. This gives a nice separation of the design problem:

- 1. Design feedback to deal with A, B, and C
- 2. Design feedforward to deal with D

Time domain specifications

E.g. specifications on step responses (w.r.t. reference, load disturbance)

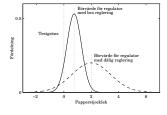
- ightharpoonup Rise-time T_r
- ightharpoonup Overshoot M
- $\blacktriangleright \ \ \text{Settling time } T_s$
- $\blacktriangleright \ \ \mathsf{Static} \ \mathsf{error} \ e_0$
- **.** . . .



Stochastic signal specifications

- ► Output variance
- Control signal variance

> ...



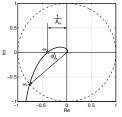
Frequency domain specifications

Open-loop specifications

- Amplitude margin A_m , phase margin φ_m
- lacktriangle Cross-over frequency ω_c
- $lackbox{ } M_s$ and M_t circles in Nyquist diagram
- ▶ ...

Closed-loop specifications, e.g.

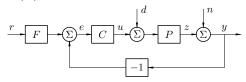
- resonance peak M_p
- ightharpoonup bandwidth ω_B
- •



 $|G_{cl}(i\omega)|$ M_p 1 $\sqrt{2}$ ω_B ω

Frequency domain specifications

Closed-loop specifications, cont'd:



Desired properties:

- ightharpoonup Fast tracking of setpoint r
- lacktriangle Small influence of load disturbance d on z
- Small influence of model errors on \boldsymbol{z}
- ightharpoonup Limited amplification of noise n in control u
- ► Robust stability despite model errors

Frequency domain specifications

Ideally, we would like to design the controller (C and F) so that

$$\frac{PCF}{1+PC}=1$$

$$\underbrace{\frac{P}{1+PC}}_{=PS} = \underbrace{\frac{1}{1+PC}}_{=S} = \underbrace{\frac{C}{1+PC}}_{=P^{-1}T} = \underbrace{\frac{PC}{1+PC}}_{=T} = 0$$

S+T=1 and other constraints makes this is impossible to achieve.

Typical compromise:

- ▶ Make T small at high frequencies ($\omega > \omega_B$)
- lacktriangle Make S small at low frequencies (+ possibly other disturbance dominated frequencies)

Expressing specifications on ${\cal S}$ and ${\cal T}$

Maximum sensitivity specifications, e.g.,

- $||S||_{\infty} \le M_s$
- $|T|_{\infty} \leq M_t$

Frequency-weighted specifications, e.g.,

- $$\begin{split} & \blacktriangleright \ \|W_S S\|_{\infty} \leq 1 \quad \text{or} \quad |S(i\omega)| \leq |W_S^{-1}(i\omega)|, \ \forall \omega \\ & \blacktriangleright \ \|W_T T\|_{\infty} \leq 1 \quad \text{or} \quad |T(i\omega)| \leq |W_T^{-1}(i\omega)|, \ \forall \omega \end{split}$$

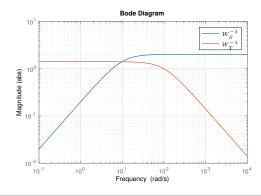
where $W_S(s)$ and $W_T(s)$ are stable transfer functions

Piecewise specifications, e.g.

 $ightharpoonup |S(i\omega)| < \frac{0.2}{\omega}, \; \omega \leq 10 \; \; {
m and} \; \; |S(i\omega)| < 2, \; \omega > 10$

Specifications on ${\cal S}$ and ${\cal T}$ – example

$$W_S^{-1}(s) = \frac{2s}{s+10}, \quad W_T^{-1}(s) = \frac{140}{s+100}$$



Limitations on specifications

The specifications cannot be chosen independently of each other:

▶ S + T = 1

Fundamental limitations [Lecture 7]:

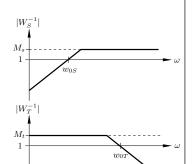
- ▶ RHP zero at $z \Rightarrow \omega_{0S} \le z/2$
- $\blacktriangleright \ \ {\rm Time \ delay} \ T \Rightarrow \omega_{0S} \leq 1/T$
- ightharpoonup RHP pole at $p\Rightarrow\omega_{0T}\geq 2p$

Bode's integral theorem:

► The "waterbed effect"

Bode's relation:

▶ good phase margin requires certain distance between ω_{0S} and ω_{0T}



Loop shaping

Idea: Look at the **loop gain** L=PC for design and to translate specifications on ${\cal S}$ and ${\cal T}$ into specifications on ${\cal L}$

$$S = \frac{1}{1+L} \approx \frac{1}{L} \qquad \text{if L is large}$$

$$T = rac{L}{1+L} pprox L \qquad ext{if L is small}$$

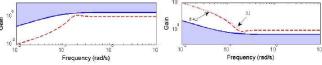
Classical loop shaping: Manually design ${\cal C}$ so that ${\cal L}={\cal P}{\cal C}$ satisfies constraints on ${\cal S}$ and ${\cal T}$

- how are the specifications related?
- \blacktriangleright what to do with the region around cross-over frequency ω_c (where $|L| \approx 1$)?

Sensitivity vs loop gain

$$S = \frac{1}{1+L}$$

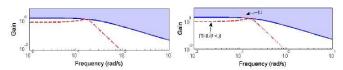
$$|S(i\omega)| \le |W_S^{-1}(i\omega)| \iff |1+L(i\omega)| > |W_S(i\omega)|$$



For small frequencies, W_S large $\Longrightarrow 1+L$ large, and $|L|\approx |1+L|$. $|L(i\omega)| \ge |W_S(i\omega)|$ (approx.)

Complementary sensitivity vs loop gain

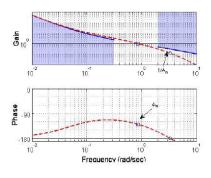
$$\begin{split} T &= \frac{L}{1+L} \\ &|T(i\omega)| \leq |W_T^{-1}(i\omega)| \Longleftrightarrow \frac{|L(i\omega)|}{|1+L(i\omega)|} \leq |W_T^{-1}(i\omega)| \end{split}$$



For large frequencies, W_T^{-1} small $\Longrightarrow |T| \approx |L|$

$$|L(i\omega)| \le |W_T^{-1}(i\omega)| \quad (approx.)$$

Resulting constraints on loop gain L:

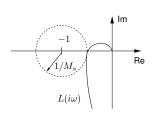


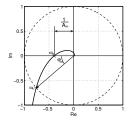
Approximations are inexact around cross-over frequency ω_c . In this region, focus is on stability margins $(A_m,\,\varphi_m)$

${\it M_s}$ and ${\it M_t}$ vs gain and phase margins

Specifying $|S(i\omega)| \leq M_s$ and $|T(i\omega)| \leq M_t$ gives bounds for the gain and phase margins (but not the other way round!)

$$|S(i\omega)| \leq M_s \quad \Longrightarrow \quad A_m > \frac{M_s}{M_s-1}, \quad \varphi_m > 2 \arcsin \tfrac{1}{M_s}$$





(Q: Why do not A_m and φ_m give bounds on M_s and M_t ?)

Lead-lag compensation

Shape the loop gain ${\cal L}={\cal PC}$ using a compensator ${\cal C}$ composed of

Lag (phase retarding) elements

$$C_{lag}(s) = \frac{s+a}{s+a/M}, \quad M > 1$$

Lead (phase advancing) elements

$$C_{lead}(s) = N \frac{s+b}{s+bN}, \quad N > 1$$

► Gain

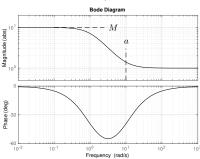
K

Example:

$$C(s) = K \frac{s+a}{s+a/M} \cdot N \frac{s+b}{s+bN}$$

Lag filter

$$G_{lag}(s) = \frac{s+a}{s+a/M}, \quad M>1$$



Special case: $M=\infty \Rightarrow {\rm integrator}$

Lead filter

$$G_{lead}(s) = N \frac{s+b}{s+bN}, \quad N>1$$
 Bode Diagram
$$b$$
 Bode Diagram

Maximum phase advance for different ${\cal N}$ given in Collection of Formulae

Properties of lead-lag filters

- ▶ Lag element
 - Reduces static error
 - Reduces stability margin
- Lead element
 - ▶ Increases speed (by increasing ω_c)
 - Increased phase
 - ⇒ May improve stability
- Gain
 - ► Translates the magnitude curve
 - Does not change phase curve

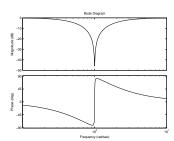
Iterative lead-lag design

- ► Step 1: Lag (phase retarding) element
 - ▶ Add phase retarding element to get low-frequency asymptote right
- ► Step 2: Phase advancing element
 - ▶ Use phase advancing element to obtain correct phase margin
- ► Step 3: Adjust gain
 - Usually need to amplitude curve to obtain the desired cross-over frequency.

Adjusting the gain in Step 3 leaves the phase unaffected, but may ruin low-frequency asymptote (need to revise lag element) \Longrightarrow Need to iterate!

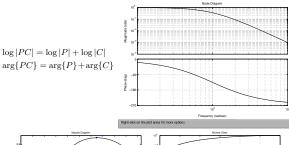
Example of other compensation link:

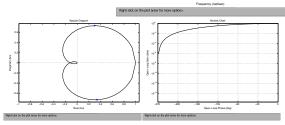
Notch filter
$$\frac{s^2 + 0.01s + 1}{s^2 + 2s + 1}$$



(E.g., supress measurement noise at specific frequency)

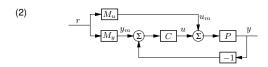
Bode, Nyquist and Nichols diagrams





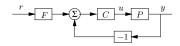
Feedforward design

Examples of 2-DOF configurations:



Ideally, we would like the output to follow the setpoint perfectly, i.e. y=r

Feedforward design (1)



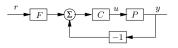
Perfect following requires

$$F = \frac{1 + PC}{PC} = T^{-1}$$

In general impossible because of pole excess in T. Also

- T might contain non-minimum-phase factors that can/should not be inverted
- lacktriangledown u must typically satisfy some upper and lower limits

Feedforward design (1)

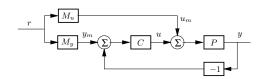


Assume T minimum phase. An implementable choice of F is then

$$F(s) = \frac{1 + P(s)C(s)}{P(s)C(s)(sT_f + 1)^d}$$

where \boldsymbol{d} is large enough to make \boldsymbol{F} proper and implementable

Feedforward design (2)

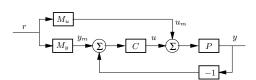


 M_y and M_u can be viewed as generators of the desired output y_m and the input u_m that corresponds to y_m

For y to follow y_m , select

$$M_u = M_u/P$$

Feedforward design (2)



Since $M_u=M_y/P$ should be stable, causal and proper we find that

- lacktriangle Unstable zeros of P must be zeros of M_y
- $\,\blacktriangleright\,$ Time delays of P must be time delays of M_y
- $\,\blacktriangleright\,$ The pole excess of M_y must not be smaller than the pole excess of P

Take process limitations into account!

Feedforward design - example

Process:

$$P(s) = \frac{1}{(s+1)^4}$$

Selected reference model:

$$M_y(s) = \frac{1}{(sT+1)^4}$$

Then

$$M_u(s) = \frac{M_y(s)}{P(s)} = \frac{(s+1)^4}{(sT_f+1)^4}$$
 $M_u(\infty) = \frac{1}{T^4}$

Fast response (small T_f) requires high gain of M_u .

Bounds on the control signal limit how fast response we can obtain.