FRTN10 Multivariable Control, Lecture 4

Automatic Control LTH, 2016

Course Outline

L1-L5 Specifications, models and loop-shaping by hand

- Introduction
- Stability and robustness
- Specifications and disturbance models
 - Control synthesis in frequency domain
- Case study

L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach

L12-L14 Controller optimization: Numerical approach

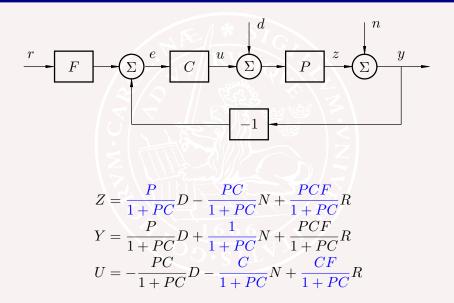
Lecture 4 – Outline

- Frequency domain specifications
- Loop shaping
- Feedforward design

[Glad & Ljung] Ch. 6.4-6.6, 8.1-8.2

Lecture 4 – Outline

Relations between signals



Design specifications

Find a controller that

- A: reduces the effect of load disturbances
- B: does not inject too much measurement noise into the system
- C: makes the closed loop insensitive to process variations
- D: makes the output follow the setpoint

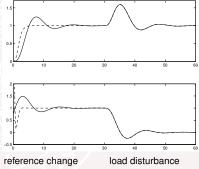
If possible, use a controller with **two degrees of freedom**, i.e. separate signal transmission from y to u and from r to u. This gives a nice separation of the design problem:

- Design feedback to deal with A, B, and C
- Design feedforward to deal with D

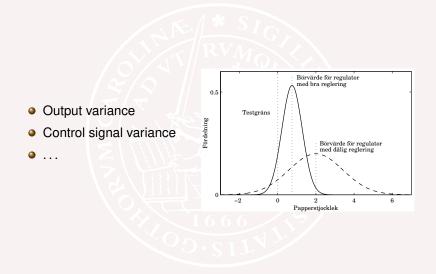
Time domain specifications



- Rise-time T_r
- Overshoot M
- Settling time T_s
- Static error e_0
- Θ ...



Stochastic signal specifications



Frequency domain specifications

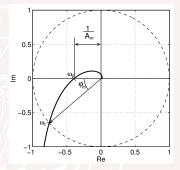
Open-loop specifications

- Amplitude margin A_m , phase margin φ_m
- Cross-over frequency ω_c
- M_s and M_t circles in Nyquist diagram

• ...

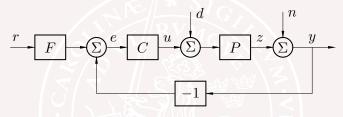
Closed-loop specifications, e.g.

- resonance peak M_p
- bandwidth ω_B



Frequency domain specifications

Closed-loop specifications, cont'd:

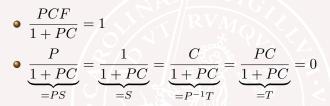


Desired properties:

- Fast tracking of setpoint r
- Small influence of load disturbance d on z
- Small influence of model errors on z
- Limited amplification of noise n in control u
- Robust stability despite model errors

Frequency domain specifications

Ideally, we would like to design the controller (C and F) so that



S + T = 1 and other constraints makes this is impossible to achieve. Typical compromise:

- Make T small at high frequencies ($\omega > \omega_B$)
- Make *S* small at low frequencies (+ possibly other disturbance dominated frequencies)

Expressing specifications on S and T

Maximum sensitivity specifications, e.g.,

•
$$\|S\|_{\infty} \leq M_{\varepsilon}$$

• $||T||_{\infty} \leq M_t$

Frequency-weighted specifications, e.g.,

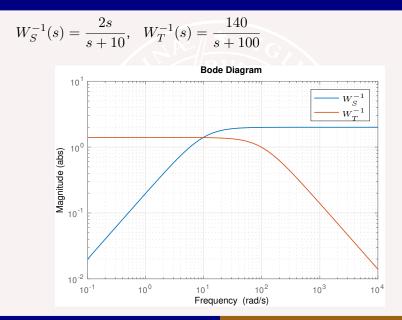
- $\|W_S S\|_{\infty} \leq 1$ or $|S(i\omega)| \leq |W_S^{-1}(i\omega)|, \forall \omega$
- $\bullet \ \left\| W_T T \right\|_\infty \leq 1 \quad \text{or} \quad |T(i\omega)| \leq |W_T^{-1}(i\omega)|, \ \forall \omega$

where $W_S(s)$ and $W_T(s)$ are stable transfer functions

Piecewise specifications, e.g.

•
$$|S(i\omega)| < \frac{0.2}{\omega}, \ \omega \le 10$$
 and $|S(i\omega)| < 2, \ \omega > 10$

Specifications on S and T – example



Automatic Control LTH, 2016 FRTN10 Multivariable Control, Lecture 4

Limitations on specifications

The specifications cannot be chosen independently of each other:

• S + T = 1

Fundamental limitations [Lecture 7]:

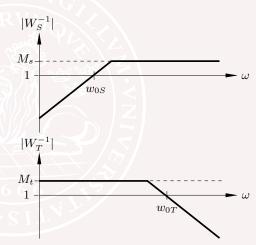
- RHP zero at $z \Rightarrow \omega_{0S} \le z/2$
- Time delay $T \Rightarrow \omega_{0S} \leq 1/T$
- RHP pole at $p \Rightarrow \omega_{0T} \ge 2p$

Bode's integral theorem:

The "waterbed effect"

Bode's relation:

• good phase margin requires certain distance between ω_{0S} and ω_{0T}



Lecture 4 – Outline

Loop shaping

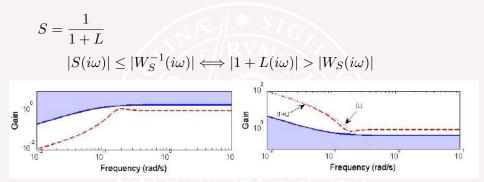
Idea: Look at the **loop gain** L = PC for design and to translate specifications on S and T into specifications on L

$$S = rac{1}{1+L} pprox rac{1}{L}$$
 if L is large $T = rac{L}{1+L} pprox L$ if L is small

Classical loop shaping: Manually design C so that L=PC satisfies constraints on S and T

- how are the specifications related?
- what to do with the region around cross-over frequency ω_c (where $|L| \approx 1$)?

Sensitivity vs loop gain

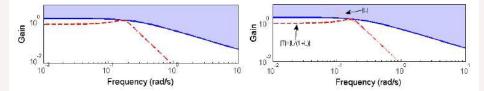


For small frequencies, W_S large $\implies 1 + L$ large, and $|L| \approx |1 + L|$.

 $|L(i\omega)| \ge |W_S(i\omega)| \quad (approx.)$

Complementary sensitivity vs loop gain

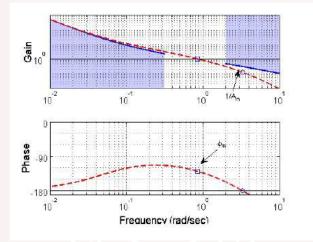
$$T = \frac{L}{1+L}$$
$$|T(i\omega)| \le |W_T^{-1}(i\omega)| \iff \frac{|L(i\omega)|}{|1+L(i\omega)|} \le |W_T^{-1}(i\omega)|$$



For large frequencies, W_T^{-1} small $\Longrightarrow |T| \approx |L|$

 $|L(i\omega)| \le |W_T^{-1}(i\omega)| \quad (approx.)$

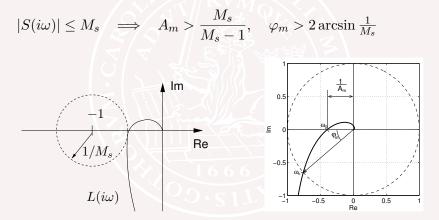
Resulting constraints on loop gain *L*:



Approximations are inexact around cross-over frequency ω_c . In this region, focus is on stability margins (A_m, φ_m)

M_s and M_t vs gain and phase margins

Specifying $|S(i\omega)| \le M_s$ and $|T(i\omega)| \le M_t$ gives bounds for the gain and phase margins (but not the other way round!)

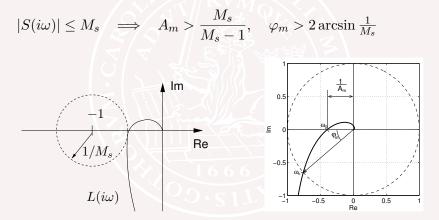


(Q: Why do not A_m and $arphi_m$ give bounds on M_s and M_t ?)

Automatic Control LTH, 2016 FRTN10 Multivariable Control, Lecture 4

M_s and M_t vs gain and phase margins

Specifying $|S(i\omega)| \le M_s$ and $|T(i\omega)| \le M_t$ gives bounds for the gain and phase margins (but not the other way round!)



(Q: Why do not A_m and φ_m give bounds on M_s and M_t ?)

Automatic Control LTH, 2016 FRTN10 Multivariable Control, Lecture 4

Lead–lag compensation

Shape the loop gain L = PC using a compensator C composed of

Lag (phase retarding) elements

$$C_{lag}(s) = \frac{s+a}{s+a/M}, \quad M > 1$$

Lead (phase advancing) elements

$$C_{lead}(s) = N \frac{s+b}{s+bN}, \quad N > 1$$

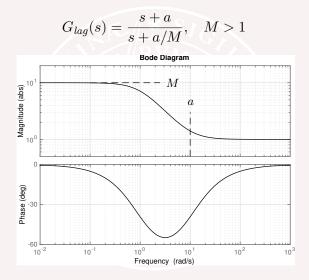
Gain

K

Example:

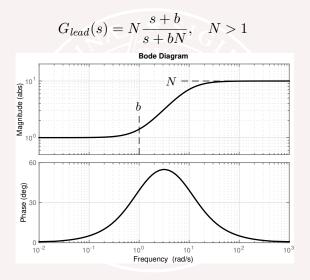
$$C(s) = K \frac{s+a}{s+a/M} \cdot N \frac{s+b}{s+bN}$$

Lag filter



Special case: $M = \infty \Rightarrow$ integrator

Lead filter



Maximum phase advance for different ${\cal N}$ given in Collection of Formulae

Properties of lead–lag filters

Lag element

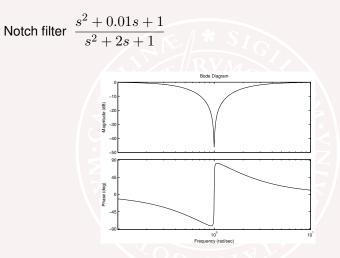
- Reduces static error
- Reduces stability margin
- Lead element
 - Increases speed (by increasing ω_c)
 - Increased phase
 - \implies May improve stability
- Gain
 - Translates the magnitude curve
 - Does not change phase curve

Iterative lead-lag design

- Step 1: Lag (phase retarding) element
 - Add phase retarding element to get low-frequency asymptote right
- Step 2: Phase advancing element
 - Use phase advancing element to obtain correct phase margin
- Step 3: Adjust gain
 - Usually need to amplitude curve to obtain the desired cross-over frequency.

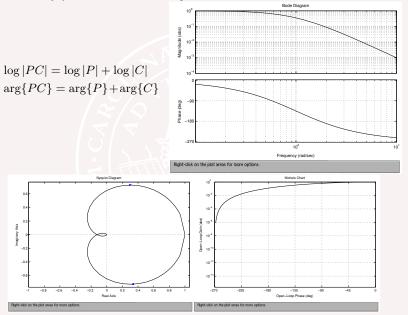
Adjusting the gain in Step 3 leaves the phase unaffected, but may ruin low-frequency asymptote (need to revise lag element) \implies Need to iterate!

Example of other compensation link:



(E.g., supress measurement noise at specific frequency)

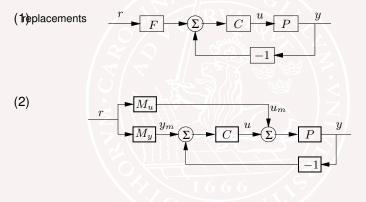
Bode, Nyquist and Nichols diagrams



Lecture 4 – Outline

Feedforward design

Examples of 2-DOF configurations:



Ideally, we would like the output to follow the setpoint perfectly, i.e. y = r

Feedforward design (1)

$$\xrightarrow{r} F \xrightarrow{\Sigma} C \xrightarrow{u} P \xrightarrow{y}$$

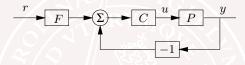
Perfect following requires

$$F = \frac{1 + PC}{PC} = T^{-1}$$

In general impossible because of pole excess in T. Also

- T might contain non-minimum-phase factors that can/should not be inverted
- u must typically satisfy some upper and lower limits

Feedforward design (1)

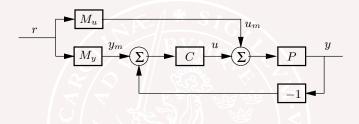


Assume T minimum phase. An implementable choice of F is then

$$F(s) = \frac{1 + P(s)C(s)}{P(s)C(s)(sT_f + 1)^d}$$

where d is large enough to make F proper and implementable

Feedforward design (2)



 M_y and M_u can be viewed as generators of the desired output y_m and the input u_m that corresponds to y_m

For y to follow y_m , select

 $M_u = M_y/P$

Feedforward design (2)



Since $M_u = M_y/P$ should be stable, causal and proper we find that

- Unstable zeros of P must be zeros of M_y
- Time delays of P must be time delays of M_y
- $\bullet\,$ The pole excess of M_y must not be smaller than the pole excess of P

Take process limitations into account!

Feedforward design – example

Process:

$$P(s) = \frac{1}{(s+1)^4}$$

Selected reference model:

$$M_y(s) = \frac{1}{(sT+1)^4}$$

Then

$$M_u(s) = \frac{M_y(s)}{P(s)} = \frac{(s+1)^4}{(sT_f+1)^4} \qquad M_u(\infty) = \frac{1}{T^4}$$

Fast response (small T_f) requires high gain of M_u .

Bounds on the control signal limit how fast response we can obtain.